
1

Software Architecture

2016

Software Architecture
§§ The quality and longevity of a software-

reliant system is largely determined by
its architecture.

§§ Recent US studies identify architectural
issues as a systemic cause of software
problems in government systems (OSD,
NASA, NDIA, National Research
Council).

Architecture is of
enduring
importance
because it is the
right abstraction
for performing
ongoing analyses
throughout a
system’’s
lifetime.

Software Architecture Thinking

§§ High-level system design providing system-level
structural abstractions and quality attributes, which help
in managing complexity

§§ Makes engineering tradeoffs explicit

2

Quality Attributes
Quality attributes
§§  properties of work products or goods by which
stakeholders judge their quality
§§  stem from business and mission goals.
§§  need to be characterized in a system-specific way

Quality attributes include
§§  Performance
§§  Availability
§§  Interoperability
§§  Modifiability
§§  Usability
§§  Security
§§  Etc.

IMPLEMENT AND EVOLVE

SATISFY

Central Role of Architecture

DESIGN IMPLEMENT

SATISFY CONFORM

ARCHITECTURE SYSTEM
BUSINESS AND
MISSION GOALS

One View:
Architecture-Centric Engineering Advancements Over the Years

§§  Architectural patterns
§§  Component-based approaches
§§  Company specific product lines
§§  Model-based approaches
§§  Frameworks and platforms
§§  Standard interfaces

3

What HAS Changed?
§§  Increased connectivity
§§  Scale and complexity
−  decentralization and distribution
−  “big data”
−  increased operational tempo
−  inter-reliant ecosystems
−  vulnerability
−  collective action

§§  Disruptive and emerging technologies

https://www.flickr.com/photos/simononly/

https://www.flickr.com/photos/c

Technology Trends

10

Software Development Trends
§§  Application frameworks
§§  Open source
§§  Cloud strategies
§§  NoSQL
§§  Machine Learning
§§  MDD
§§  Incremental approaches
§§  Dashboards
§§  Distributed development environments
§§  DevOps

Technical Challenges

4

At the intersections
there are difficult
tradeoffs to be made
in structure, process,
time, and cost.

Architecture is the
enabler for tradeoff
analyses.

The Intersection and Architecture State of the Practice

Focus is on
§§  culture and teaming
§§  process and practices
−  value stream mapping
−  continuous delivery practices
−  Lean thinking

§§  tooling, automation, and measurement
−  tooling to automate repetitive tasks
−  static analysis
−  automation for monitoring architectural health
−  performance dashboards

Architecture and Scale

n  §§  Cloud strategies
n  §§  Cloud strategies for mobility
n  §§  Big data

“Scale Changes Everything”

Two Perspectives of Software Architecture in
 Cloud Computing

Two potentially
different sets of
= business
goals and
quality
attributes

5

Mobile Device Trends Architecture Trends: Cyber-Foraging

§§ Edge Computing
§§ Using external resource-rich surrogates to
augment the capabilities of resource-limited
devices
−  code/computation offload
−  data staging
§§  Industry is starting to build on this concept to

improve mobile user experience and decrease
network traffic.

§§ Our research: cloudlet-based cyber-
foraging

−  brings the cloud closer to the user

Nokia Siemens Networks
Liquid Applications

Cisco Systems
Fog Computing

Big Data Systems

§§ Two very distinct but related
technological thrusts

− Data analytics
−  Infrastructure
§§ Analytics is typically a massive data

reduction exercise – “data to
decisions.”

§§ Computation infrastructure necessary to
ensure the analytics are

−  fast
−  scalable
−  secure
−  easy to use

Big Data – State of the Practice
“The problem is not solved”

Building scalable, assured big data systems is hard.

Building scalable, assured big data systems is expensive.

40

6

Big Data Survey

http://visual.ly/cios-big-data

Architecture and Big Data
§§ System costs must grow more

slowly than system capacity.
§§ Approaches
−  scalable software architectures
−  scalable software technologies
−  scalable execution platforms
§§ Scalability reduces as

implementation complexity
grows.

§§ NoSQL models are not created
equal.

§§ You can’t manage what you
don’t monitor.

Architecture-Centric
 Quality Attribute Analyses

Data Quality
•  Data precision/accuracy

•  Temporal correctness

•  Confidence

Architecture Model

Single Annotated Architecture Model Addresses
Impact Across Operational Quality Attributes

Auto-generated
analytical models

Safety Reliability
•  MTBF

•  FMEA

•  Hazard Analysis

Security
•  Intrusion

•  Integrity

•  Confidentiality

Resource
Consumption
•  Bandwidth

•  CPU time

•  Power consumption

Real-time Performance
•  Execution time/deadline

•  Deadlock/starvation

•  Latency

Summary

n  §§  Software architecture
principles and their
importance persist.

n  §§  Change brings new
challenges.

n  §§  Software architecture
practices and research are
key to meeting these
challenges.

n  §§  Much remains to be
done.

7

What to do with the data SW Stack: Architecture,Standards

IoT Landscape EVERY Where

8

Class Book & References
n  Classics:

q  Mary Shaw & David Garlan, Software Architecture: Perspectives on an Emerging
Discipline;, Prentice Hall, 1996.

q  Many IEEE, ACM, ELSEVIER, and Open Source papers

n  Other references actively used:
q  Evaluating Software Architectures: Methods & Case Studies, Addison-Wesley, ISBN

020170482X.

q  Design & Use of Software Architectures: Adopting and Evolving a Product Line Approach:
ISBN: 0201674947

q  SEI Selected Papers: http://www.sei.cmu.edu/architecture/
q  USC Selected Papers: http://sunset.usc.edu

q  UCI Selected Papers: http://www.ics.uci.edu

n  Other References & Standards discussed:
q  IEEE 1471, ISO RM-ODP

n  http://www.dstc.edu.au/Research/Projects/ODP/ref_model.html

q  IEEE 1220, EIA-632, EIA-731, DO-178B, J-STD-016-1995

29

Other Referenced Sites
n  Primary References:

q  http://portal.acm.org/dl.cfm?coll=portal&dl=ACM&CFID=3943453&CFTOKEN=26992569
n  (ACM Copyrighted Papers)

q  http://ieeexplore.ieee.org/Xplore/DynWel.jsp
n  (IEEE Copyrighted papers)

q  http://www.sciencedirect.com/
n  (Elsevier Copyrighted material)

q  http://citeseer.nj.nec.com/cs (Lots of open source materials)
q  http://www.sei.cmu.edu/str/ (Lots of open source materials)
q  http://www-2.cs.cmu.edu/~able/publications/ (Lots of open source materials)
q  http://www.sei.cmu.edu/staff/rkazman/SE-papers.html (Lots of open source materials)
q  http://www.cs.ukc.ac.uk/people/staff/cr3/bib/bookshelf/Modules.html

n  (A ton of open source materials)
q  http://www2.umassd.edu/SECenter/SAResources.html (Links to other sites)
q  http://www.cgl.uwaterloo.ca/~rnkazman/SA-sites.html (Links to other sites)
q  http://www-ksl-svc.stanford.edu:5915/ (Ontologies)
q  http://www.sei.cmu.edu/architecture/adl.html (Architecture Definition Languages)

30

Other Referenced Sites

n  Secondary References Used:
q  http://www-2.cs.cmu.edu/afs/cs/academic/class/17655-s02/www/

 (Garlan’s Class on SA)
q  http://www.softwaresystems.org/architecture.html
q  http://www-old.ics.uci.edu/pub/arch/
q  http://cora.whizbang.com/
q  http://selab.korea.ac.kr/selab/resources/se/architecture.htm#Web
q  http://www.cebase.org/
q  http://www.afm.sbu.ac.uk/
q  http://www.wwisa.org
q  http://www.dacs.dtic.mil/databases/url/key.hts?keycode=71:2024&islowerlevel=1
q  http://www.cs.colorado.edu/serl/arch/Papers.html
q  http://www.cetus-links.org/

31

Other Referenced Sites

n  Tools:
q  http://www.isr.uci.edu/projects/xarchuci/ (xADL 2.0)
q  http://www.isr.uci.edu/projects/xarchuci/tools-overview.html
q  http://www.isr.uci.edu/projects/archstudio/setup-rundevelop.html (xADL)
q  http://www.isr.uci.edu/projects/archstudio/
q  http://www.kc.com/products/iuml/lite.html (xUml)
q  http://www-2.cs.cmu.edu/~able/software.html (ACME SW)
q  http://www-2.cs.cmu.edu/~Compose/html/tools.html
q  http://pavg.stanford.edu/rapide/ (RAPIDE)
q  http://www.afm.sbu.ac.uk/z/ (Z)

32

9

Further Reading
n  Design and Use of Software Architectures : Adopting

and Evolving a Product-Line Approach, Jan Bosch,
2000

n  Applied Software Architecture, Hofmeister Christine,
1999

n  The Art of Software Architecture: Design Methods and
Techniques, S. T. Albin, 2003

n  Software Architecture in Practice, L. Bass, P.
Clements and R. Kazman, 2003.

33

Further Reading
n  Evaluating Software Architectures: Methods and Case

Studies, P. Clements, R. Kazman and M. Klein, 2001.
n  Documenting Software Architectures: Views and

Beyond, Clements, Paul, Felix Bachmann, Len Bass,
David Garlan, James Ivers, Reed Little, Robert Nord and
Judith Stafford, 2002.

n  Software Architecture: Organizational Principles and
Patterns, Dikel, David, D. Kane and J. Wilson, 2001.

n  Large-Scale Software Architecture : A Practical Guide
using UML, Jeff Garland and Richard Anthony, 2002.

n  Designing Software Product Lines wtih UML: From Use
Cases to Pattern Based Software Architectures, H,
Gomma, 2005.

n  Essential Software Architecture, Ian Gorton, 2006.

34

Further Reading

n  Software Architecture: Foundations, Theory, and
Practice, Richard N. Taylor, Nenad Medvidovic and
Eric Dashofy

n  Essential Software Architecture, Ian Gorton, 2006.
n  97 Things Every Software Architect Should Know,

Richard Monson-Haefel
n  Documenting Software Architectures: Views and

Beyond, Paul Clements, Felix Bachmann, Len Bass
and David Garlan, 2010.

n  The Process of Software Architecting, Peter Eeles
and Peter Cripps, 2009.

35

Contents
Topic 0 - Overview
Topic 1 - History and Definition of Software Architecture
Topic 2 - Modern Software Architecture
Topic 3 - Software Architecture and the Built Environment
Topic 4 - Masterplans and Piecemeal Growth
Topic 5 - Architecture Description Languages
Topic 6 - Architectural Styles
Topic 7 - Architecture Patterns
Topic 8 - Domain Specific Software Architecture
Topic 9 - Discipline of Software Architecture
Topic 10 - Software Architecture and the UML
Topic 11 - Architecture and Component Based Development
Topic 12 - Software Architecture Evaluation
Topic 13 - Software Architecture and OO Development
Topic 14 - Software Architecture and CORBA Middleware
Topic 15 - The OMG’s Domain Driven Architecture
Topic 16 - Software Architecture and Process
Topic 17 - Software Architecture Reengineering
Topic 18 – Service Oriented Architecture (SOA)
Topic 19 - Security and Trust of Software Architecture
Topic 20 - Web2.0 and Software Architecture
Topic 21 - Cloud Computing and Software Architecture
Topic 22 - Software Architecture and Concurrency
Topic 23 - Visualising Software Architecture
Topic 24 - Implementing Software Architecture
Topic 25 - Implementing Software Architecture (II)
Topic 26 - Software Architecture: Being Creative

36

10

Topic 0: Overview

Build Software or Build Airliners
n  True Feats of Engineering

q  The Boeing 747 (the biggest beast)
q  Software Systems

n  The Boeing 747
q  1970: 4.5 million parts, 3 million pins, rivets
q  2003: 6 million parts, 3 million pins, rivets

n  Windows TM Operating System
q  Windows XP: 40 Million Lines of Code
q  Windows 2000: 20 Million Lines of Code

n  Linux Operating System
q  Kernel ver. 2.6: 5.7 Million Lines of Code

n  There is no “Silver Bullet”

38

Engineering Common Ground

n  Reliability
q  Specification Owner
q  Frozen Requirements
q  Verification

n  Budgets
q  Schedule
q  Complexity

n  Innovation
q  Near-term Requirements
q  In-place Evolution

n  People
q  Management
q  Personalities

39

No “Silver Bullet”

n  Innovation in aerospace, not the 747!
q  Complexity per Year: 1% vs. 20% in Software

n  Boeing 747 35yrs Reliable WW2 technology
n  Software 49yrs Constant Innovation

n  Reinventing Engineering
q  Reliability follows Innovation
q  Being First means Learning the Hard Way

n  Build Software, not Airliners

40

11

The Core Triad for Success

n  People
n  Process
n  Technology

n  People + Process + Technology !!!

41

Software Evolution

q  People
n  Position Descriptions of the 70s:

q  Programmers
n  80s

q  Programmer/analysts
n  90s

q  Developer
q  Architect
q  Business Analyst

n  00s ?
q  UI Designer
q  Bean Provider
q  Assembler
q  Deployer

42

+ Architect
+ Modeler
+ Implementer
+ Project Manager

+ System Analyst
+ Config. Mgr.
+ System Tester
+ Test Designer

Software Evolution (cont’d)

n  Processes
q  Ad Hoc
q  Waterfall
q  Spiral
q  Incremental
q  Iterative
q  RAD/JAD
q  Unified Process
q  Extreme Programming (XP)
q  Feature-Driven Development
q  etc

43

Software Evolution (cont’d)

n  Technology
q  Languages: Assembler , Procedural, Structured,

 Object-Oriented
q  3GL/4GL/CASE
q  Life Cycle Tools

n  Requirements, Architecting, Building, Testing
n  Configuration Management/Version Control
n  Round-trip Engineering (manual steps)
n  Simultaneous round-trip tools

q  Modeling:
n  Structured, DFD,
n  Coad, OMT, Booch,
n  UML

44

12

Some Fundamental Issues

n  Software is very complex today
q  Hard for one to understand it all
q  Difficult to express in terms all stakeholders understand

n  Business drivers add pressure
q  Shrinking business cycle
q  Competition increasing
q  Ever rising user expectations

n  “Soft” Requirements
q  A common threat to schedule, budget, success
q  Too much change can cause failure

45

Fundamental Issues (ii)

n  Flexibility and resilience to change is key
q  Ability to adapt to sudden market changes
q  Design is solid enough that change does not impact the

core design in a destabilising way
q  Willingness to re-architect as required

n  Most projects are unpredictable
q  Lack of knowing where and what to measure
q  Lack of yardsticks to gauge progress
q  Requirements creep is common
q  Scrap and rework is common
q  Interminably 90% done

46

Fundamental Issues (iii)

n  Lack of quality people results in failure
q  …in spite of best processes and tools!
q  Managing people is difficult

n  Major change is organisationally difficult
n  Reusing software artifacts is rare

q  Architectures/Designs/Models
q  Estimating processes
q  Team processes
q  Planning & Tracking procedures and reports
q  Software construction & management
q  Reviews, testing
q  etc.

47

The Pioneering Era (1955-1965)

n  New computers were coming out every year or two.
n  Programmers did not have computers on their desks and had to

go to the "machine room".
n  Jobs were run by signing up for machine time. Punch cards were

used.
n  Computer hardware was application-specific. Scientific and

business tasks needed different machines.
n  High-level languages like FORTRAN, COBOL, and ALGOL were

developed.
n  No software companies were selling packaged software.
n  Academia did not yet teach the principles of computer science.

48

13

The Stabilising Era (1965-1980)

n  Came the IBM 360.
n  This was the largest software project to date.
n  The 360 also combined scientific and

business applications onto one machine.
n  Programmers had to use the job control

language (JCL) to tell OS what to do.
n  PL/I, introduced by IBM to merge all

programming languages into one, failed.
n  The notion of timesharing emerged.

49

The Stabilising Era (1965-1980)

n  Software became a corporate asset and its value
became huge.

n  Academic computing started in the late 60's.
n  Software engineering discipline did not yet exist.
n  High-hype disciplines like Artificial Intelligence

emerged.
n  Structured Programming burst on the scene.
n  Standards organisations became control battle

grounds.
n  Programmers still had to go to the machine room.

50

The Micro Era (1980-Present)

n  The price and size of computers shrunk.
Programmers could have a computers on
their desks.

n  The JCL got replaced by GUI.
n  The most-used programming languages

today are between 15 and 40 years old. The
Fourth Generation Languages never
achieved the dream of "programming without
programmers".

51

Software Characteristics

n  software is engineered, not manufactured
s  no manufacturing phase which introduces quality

problems
s  costs concentrated in engineering

n  software does not wear out
s  does deteriorate
s  no spare parts

n  most software is custom built rather than
being assembled from components

52

14

Hardware Characteristics

53

Software Characteristics

54

Software attributes - conflicting aims

55

Ease of
maintenance

Reliability

Cost of
Production

Performance

Meeting
deadlines

Digital Economy

n  E-Commerce
 – the online exchange of value (goods, services, and/or money)
within firms, between firms, between firms and their customers,
and between consumers.

n  Digital Economy
 – An economy that is empowered by IT, Internet and digital

 technologies.
 – Individuals and enterprises create wealth by applying

 knowledge, networked human intelligence, and effort to
manufacturing, agriculture and services

n  Impact of the Digital Economy
 – New Products
 – New Business Opportunities
 – New Business Relationship

56

15

BITS INSTEAD OF ATOMS

n  Digital Representation
q  The physical world (atoms) is modeled with

1’s and 0’s (bits)

n  Enabling Technology
q  Allows high capacity data storage (bit memory)
q  Allows large system integration (bit regeneration)
q  Allows large distance communications (noise immunity)
q  Allows inexpensive, low power hardware (CMOS)
q  Allows data compression (Internet images & video)
q  Allows data encryption (e-commerce)

57

Summary

n  Changing Society & Changing Software
n  A Day in the Life of the Digital Consumer in

the Future
q  People move freely from one environment to another
q  They use whatever devices are most convenient at the time
q  They automatically connect using the best network available

at the time based on their personal profile
q  They have access to the same personalised services

automatically scaled to the device and connection they are
using

q  They have one service provider that manages and optimises
their service and account based on their unique needs and
resources.

58

Topic 1: History and
Definition of Software
Architecture

Software Life Cycle Revisited

n  software development projects are large and
complex

n  a phased approach to control it is necessary

60

16

Simple life cycle model

61

reqs. specification

problem

design

program

working program

reqs. engineering

design

implementation

testing

maintenance

Simple Life Cycle Model

n  document driven
n  milestones are reached if the appropriate

documentation is delivered (e.g.,
requirements specification, design
specification, program, test document)

n  problems
q  feedback is not taken into account
q  maintenance does not imply evolution

62

Waterfall Model

63

Maintenance

V & V

Reqs. Analysis

V & V

Design

V & V

Implementation

V & V

Testing

V & V

Waterfall Model (cntd)

n  includes iteration and feedback
n  validation (are we building the right

system?) and verification (are we building
the system right?) after each step

n  user requirements are fixed as early as
possible

n  problems
q  too rigid
q  developers cannot move between various

abstraction levels
64

17

Spiral Model

n  all development models have something in
common: reducing the risks

65

Spiral Model (cntd)

66

Determine
objectives,

alternatives,
constrains

Evaluate alternatives,
Identify and resolve risks

Develop, verify
next-level product Plan next phase

Towards a Software Factory

n  developers are not inclined to make a
maintainable and reusable product, it has
additional costs

n  this viewpoint is changed somewhat if the
product or product family is the focus of
attention rather than producing the initial
version of the product

67

Towards a Software Factory (cntd)

n  reuse becomes important
n  progress has been made in the areas of:

reusable design (e.g., software architecture
and design patterns) and software
components

n  the idea of a software factory
q  share people’s knowledge
q  share reusable products/components

68

18

Software Architecture

n  High-level abstraction of system -
Programming in the large

69

Benefits of Studying Software Architecture

n  Greater understanding
n  Reuse
n  Evolution
n  Analysis
n  Management

70

71 72

19

73 74

Promised Benefits of
Architectural Modeling

n  Clarify intentions
n  Make decisions and

implications explicit
n  Permit system-level

analysis

75

Requirements

Architecture

Design

Code/Integ

Test/Accept

Maintenance

test & debug (28%)
review document (6%)

trace logic (23%)
implement change (19%)

update document (6%)

define/analyze change
 (18%)

Reduce maintenance
costs, directly and

indirectly

Architectural Design Reviews

76

Prospectus

Requirements

Architecture

High-Level
Design

Low-Level
Design

Planning and
Architecture Phase

Discovery
Review

Architecture
Review

Source:
Joe Maranzano
ATT Bell Labs

20

Architecture in the Life-Cycle (1)

n  Views of a Software System
 "An important objective of software

architecture is the production of a consistent
set of views of the system and its parts
presented in a structure that satisfies the
needs of both the end-user and later
designers."(Witt et al.)

77

Architecture in the Life-Cycle (2)

n  Customer
 Concern
 Schedule and budget estimation
 Feasibility and risk assessment
 Requirements Traceability
 Progress Tracking

78

Architecture in the Life-Cycle (3)

n  User
 Concern
 Consistency with requirements and

 usage scenarios
 Future requirement growth

 accommodation
 Performance, reliability,

 interoperability, etc.

79

Architecture in the Life-Cycle (4)

n  Architect
 Concern
 Requirements Traceability
 Support of tradeoff analyses
 Completeness, consistency of

 architecture

80

21

Architecture in the Life-Cycle (5)

n  Developer
 Concern
 Sufficient detail for design
 Reference for selecting/assembling

 components
 Maintain interoperability with

 existing systems

81

Architecture in the Life-Cycle (6)

n  Maintainer
 Concern
 Guidance on software modification
 Guidance on architecture evolution
 Maintain interoperability with existing

 systems

82

83 84

22

85 86

87

Software Architecture Definition

n  The software architecture of a system is the
structure or structures of the system, which
comprise software components, the
externally visible properties of those
components, and the relationships among
them.

n  Len Bass, Paul Clements, and Rick Kazman.
Software Architecture in Practice. SEI Series
in Software Engineering. Addison-Wesley,
Reading, Massachusetts, 1998.

88

23

Software Architecture Definition (cntd)

n  Important issues raised:
q  multiple system structures;
q  externally visible (observable) properties of

components.
n  The definition does not include:

q  the process;
q  rules and guidelines;
q  architectural styles.

89

Software Architecture

n  The IEEE Architecture Working Group (P1471), the
Recommended Practice for Architectural
Description, has established the following definition
of architecture and related terms:

n  Architecture is the fundamental organisation of a
system embodied in its components, their
relationships to each other and to the environment
and the principles guiding its design and evolution.

90

Software Architecture (cntd)

IEEE architecture definition rationale:
n  To avoid the inclusion of the term ”structure” which

is often associated with the physical structure of a
system. An architecture is a property or concept of a
system, not merely its structure.

n  The phrase ``highest-level'' is used to abstract away
from low-level details.

n  An architecture can not be viewed in isolation, its
environment in which it is embedded should be
taken into account.

91

Software architecture (cntd)

Other IEEE related architecture definitions:
n  Architect: the person, team or organisation

responsible for systems architecting.
n  Architecting: the activities of defining, maintaining,

improving and certifying proper implementation of an
architecture.

n  Architecture: the highest-level conception of a
system in its environment.

n  Architectural description: a collection of products
to document an architecture.

92

24

Software architecture

Other IEEE related architecture definitions
(continued):

n  System stakeholder: an individual, team, or
organisation (or classes hereof) with interests in, or
concerns relative to, a system.

n  View: a representation of a whole system from the
perspective of a related set of concerns.

n  Viewpoint: a pattern or template from which to
construct individual views. A viewpoint establishes
the purposes and audience for a view and the
techniques or methods employed in constructing a
view.

93

A Simple Architecture

94

Early Notions of Software
Architecture
n  The earliest pioneers of what we now refer to

as Software Architecture were Edgar Dijkstra,
Fred Brooks Jr., and David Lorge Parnas

n  In programming the term architecture was
first applied to descriptions covering more
than one computer system
q  i.e. “families of systems”

n  Brooks and Iverson (1969) called architecture
the “…conceptual structure of a system…as
seen by the programmer”

95

Edgar Dijkstra 1968

n  Dijkstra stressed as early as 1968 that how
software is partitioned and structured is
important
q  Not merely simply programming a “correct”

solution
q  He introduced the idea of “layered structures” for

operating systems
n  Resulted in ease of development, maintenance

96

25

Fred Brooks Jr. on System
Architecture (1975)
n  “By the architecture of the system I mean

the complete and detailed specification of the
user interface….”

n  “The architect of a system, like the architect
of a building, is the user’s
agent.” (“Aristocracy, Democracy and
System Design” in The Mythical Man-Month,
1975)

97

Brooks: Simplicity and
Straightforwardness
n  “…It is not enough to learn the elements and rules

of combination; one must also learn idiomatic usage,
a whole lore of how the elements are combined in
practice. Simplicity and straightforwardness proceed
from conceptual integrity. Every part must reflect the
same philosophies and the same balancing of
desiderata….Ease of use, then, dictates unity of
design, conceptual integrity”

98

‘One Mind, Many Hands’

n  Conceptual integrity must proceed from one,
or a small number of minds
q  e.g., Reims Cathedral’s Jean d’Orbais

n  But schedule pressures demand many hands
n  Two techniques proposed:

q  Separation of architectural effort from
implementation

q  New structuring of software development teams
n  “The Surgical Team”

99

The Surgical Team

n  The problem
q  The “small, sharp” team is ideal…

n  Ten or less excellent programmers

q  …but too slow for really big systems
n  The solution

q  The ‘surgical team’: one cutter, many supporters

100

26

Communication Patterns

101

Surgeon

Administrator

Editor

Co-pilot

Programming
Clerk

Toolsmith

Tester

Language
lawyer

Secretary

Secretary

How the Surgical Team works

n  10 people, seven professionals, work to a
system which is the product of a single (or
maybe two) mind.

n  Not a democracy of equals. The surgeon
rules. No “division of problem”

n  Division of labour permits radically simpler
communication patterns.

102

Brooks on Blaauw

n  Blaauw says total creative effort involves three
distinct phases
q  Architecture

n  Writing all the external specifications
q  Implementation
q  Realisation

n  Three “common objections” noted by Brooks
q  The specifications will be too rich and costly
q  Creativity is confined to the architects
q  Implementors will sit idle waiting for the architecture

103

Refuting Common Objections

n  “…architects will get all the creative fun”
q  An illusion. Implementation is a creative activity that is

undiminished by external specification: “Form is a liberator”

n  “…implementors will sit idly by…”
q  Another illusion. A matter of timing and phasing, i.e. project

management. The three activities can “be begun in parallel
and proceed simultaneously”

n  “The specifications will be too rich…”
q  A serious issue(dealt with by Brooks in “The Second-

System Effect”)

104

27

“Interactive Discipline for the
Architect”
n  In building, contractors’ bids most often

exceed the budget
n  Architect has two possible responses

q  Cut the design
q  Challenge the bid by suggesting cheaper

implementations
n  The latter involves interactive dialogue with

the builder

105

Architect vs. Builder

n  To be successful, the architect must
q  Suggest, not dictate, an implementation

n  “The builder has creative and inventive responsibility for the
implementation”

q  Always be able to suggest a way of implementing a
specification
n  Be prepared to accept alternatives

q  Deal privately and quietly in such suggestions
q  Be ready to forego credit for suggested improvements

n  “Often the builder will counter by suggesting
changes to the architecture. Often he is right”

106

David Parnas 1971-79

n  Parnas developed these ‘architectural’ concerns and
turned them into fundamental tenets of Software
Engineering. The main principles included:
q  Information Hiding as the basis of decomposition for ease

of maintenance and reuse [72]
q  The separation of Interface from implementation of

components [71, 72]
q  Observations on the separate character of different

program elements [74]

107

David Parnas 1971-79 (contin.)

n  Main principles (continued):
q  The “uses” relationship for controlling the connectivity between components [79]

n  To increase extensibility
q  Principles for the detection and handling of errors [72, 76]

n  i.e., exceptions

q  Identifying commonalities in “families of systems” [76]
n  To provide coarse-grained, stable common structures

q  Recognition that structure influences non-functional ‘qualities’ of a system [76]

n  Parnas D. 1972. “On the Criteria for Decomposing Systems into Modules”.
Communications of the ACM. 15(12): pp.1053-8

n  Parnas D. 1974. “On a ‘Buzzword’: Hierarchical Structure”. Proceedings of the
IFIP Congress. 74 pp.336-390

n  Parnas D. 1976. “On the Design and Development of Program Families”. IEEE
Transactions of Software Engineering, SE-2(1):pp. 1-9

n  Parnas D. 1979. “Designing Software for Ease of Extension and Contraction”. IEEE
Transactions on Software Engineering. SE-5(2) pp.128-137

108

28

Fundamental Understanding

n  Architecture is a set of principal design
decisions about a software system

n  Three fundamental understandings of
software architecture
q  Every application has an architecture
q  Every application has at least one architect
q  Architecture is not a phase of development

109

Wrong View: Architecture as a Phase

q  Treating architecture as a phase denies its
foundational role in software development

q  More than “high-level design”
q  Architecture is also represented, e.g., by object

code, source code, …

110

Context of Software Architecture

n  Requirements
n  Design
n  Implementation
n  Analysis and Testing
n  Evolution
n  Development Process

111

Requirements Analysis

n  Traditional SE suggests requirements analysis
should remain unsullied by any consideration for
a design

n  However, without reference to existing
architectures it becomes difficult to assess
practicality, schedules, or costs
q  In building architecture we talk about specific rooms…
q  …rather than the abstract concept “means for

providing shelter”
n  In engineering new products come from the

observation of existing solution and their
limitations

112

29

New Perspective on Requirements Analysis

n  Existing designs and architectures provide
the solution vocabulary

n  Our understanding of what works now, and
how it works, affects our wants and perceived
needs

n  The insights from our experiences with
existing systems
q  helps us imagine what might work and
q  enables us to assess development time and costs

n  à Requirements analysis and consideration
of design must be pursued at the same time 113

Non-Functional Properties (NFP)

n  NFPs are the result of architectural choices
n  NFP questions are raised as the result of

architectural choices
n  Specification of NFP might require an

architectural framework to even enable their
statement

n  An architectural framework will be required
for assessment of whether the properties are
achievable

114

The Twin Peaks Model

115

Design and Architecture

n  Design is an activity that pervades software development
n  It is an activity that creates part of a system’s architecture
n  Typically in the traditional Design Phase decisions concern

q  A system’s structure
q  Identification of its primary components
q  Their interconnections

n  Architecture denotes the set of principal design decisions
about a system
q  That is more than just structure

116

30

Architecture-Centric Design
n  Traditional design phase suggests translating

the requirements into algorithms, so a
programmer can implement them

n  Architecture-centric design
q  stakeholder issues
q  decision about use of COTS component
q  overarching style and structure
q  package and primary class structure
q  deployment issues
q  post implementation/deployment issues

117

Design Techniques

n  Basic conceptual tools
q  Separation of concerns
q  Abstraction
q  Modularity

n  Two illustrative widely adapted strategies
q  Object-oriented design
q  Domain-specific software architectures (DSSA)

118

Object-Oriented Design (OOD)

n  Objects
q  Main abstraction entity in OOD
q  Encapsulations of state with functions for

accessing and manipulating that state

119

Pros and Cons of OOD

n  Pros
q  UML modeling notation
q  Design patterns

n  Cons
q  Provides only

n  One level of encapsulation (the object)
n  One notion of interface
n  One type of explicit connector (procedure call)

q  Even message passing is realized via procedure calls
q  OO programming language might dictate important design

decisions
q  OOD assumes a shared address space

120

31

Implementation

n  The objective is to create machine-
executable source code
q  That code should be faithful to the architecture

n  Alternatively, it may adapt the architecture
n  How much adaptation is allowed?
n  Architecturally-relevant vs. -unimportant adaptations

q  It must fully develop all outstanding details of the
application

121

Faithful Implementation

n  All of the structural elements found in the
architecture are implemented in the source code

n  Source code must not utilise major new
computational elements that have no
corresponding elements in the architecture

n  Source code must not contain new connections
between architectural elements that are not
found in the architecture

n  Is this realistic?
Overly constraining?
What if we deviate from this?

122

Unfaithful Implementation
n  The implementation does have an

architecture
q  It is latent, as opposed to what is documented.

n  Failure to recognise the distinction between
planned and implemented architecture
q  robs one of the ability to reason about the

application’s architecture in the future
q  misleads all stakeholders regarding what they

believe they have as opposed to what they really
have

q  makes any development or evolution strategy that
is based on the documented (but inaccurate)
architecture doomed to failure 123

Implementation Strategies

n  Generative techniques
q  e.g. parser generators

n  Frameworks
q  collections of source code with identified places

where the engineer must “fill in the blanks”
n  Middleware

q  CORBA, DCOM, RPC, …
n  Reuse-based techniques

q  COTS, open-source, in-house
n  Writing all code manually 124

32

How It All
Fits
Together

125

Analysis and Testing

n  Analysis and testing are activities undertaken
to assess the qualities of an artifact

n  The earlier an error is detected and corrected
the lower the aggregate cost

n  Rigorous representations are required for
analysis, so precise questions can be asked
and answered

126

Analysis of Architectural Models

n  Formal architectural model can be examined
for internal consistency and correctness

n  An analysis on a formal model can reveal
q  Component mismatch
q  Incomplete specifications
q  Undesired communication patterns
q  Deadlocks
q  Security flaws

n  It can be used for size and development time
estimations 127

Analysis of Architectural Models
(cont’d)
n  Architectural model

q  may be examined for consistency with
requirements

q  may be used in determining analysis and testing
strategies for source code

q  may be used to check if an implementation is
faithful

128

33

Evolution and Maintenance

n  All activities that chronologically follow the release of an
application

n  Software will evolve
q  Regardless of whether one is using an

architecture-centric development process or not
n  The traditional software engineering approach to maintenance

is largely ad hoc
q  Risk of architectural decay and overall quality degradation

n  Architecture-centric approach
q  Sustained focus on an explicit, substantive, modifiable,

faithful architectural model

129

Turbine – A New Visualisation Model

n  Goals of the visualisation
q  Provide an intuitive sense of

n  Project activities at any given time
q  Including concurrency of types of development activities

n  The “information space” of the project
q  Show centrality of the products

n  (Hopefully) Growing body of artifacts
n  Allow for the centrality of architecture

q  But work equally well for other approaches,
including “dysfunctional” ones

q  Effective for indicating time, gaps, duration of activities
q  Investment (cost) indicators

130

The Turbine Model

131

Coding

Design

Requirements

Testing

Simplistic Waterfall,
Side perspective

time
“Core” of project
artifacts

Radius of rotor indicates
level of staffing at time t

Gap between rotors
indicates no project
activity for that Δt

ti

Cross-section at time ti

132

Design
(activity)

Requirements

Design
doc

34

The Turbine Model

133

Waterfall example,
Angled perspective

time

A Richer Example

134

S1
Design/Build/
Requirements

Test/Build/
Deploy

Assess/…

Requirements/Architecture
assessment/Planning

Build/Design/
Requirements/Test

time

A Sample Cross-Section

135

A Cross-Section at Project End

136

35

Volume Indicates Where Time was
Spent

137

Design/Build/
Requirements

Test/Build/
Deploy

Assess/…

Requirements/
Architecture Assessment / Planning

Build/Design/
Requirements/Test

A Technically Strong Product-Line
Project

138

Assessment

Parameterization Customization

Deployment
Capture of new
Work

Visualisation Summary

n  It is illustrative, not prescriptive
n  It is an aid to thinking about what’s going on

in a project
n  Can be automatically generated based on

input of monitored project data
n  Can be extended to illustrate development of

the information space (artifacts)
q  The preceding slides have focused primarily on

the development activities

139

Summary (1)
n  A proper view of software architecture affects

every aspect of the classical software
engineering activities

n  The requirements activity is a co-equal
partner with design activities

n  The design activity is enriched by techniques
that exploit knowledge gained in previous
product developments

n  The implementation activity
q  is centered on creating a faithful implementation of

the architecture
q  utilises a variety of techniques to achieve this in a

cost-effective manner 140

36

Summary (2)

n  Analysis and testing activities can be focused
on and guided by the architecture

n  Evolution activities revolve around the
product’s architecture.

n  An equal focus on process and product
results from a proper understanding of the
role of software architecture

141

Software architecture: milestones
1968: The inner and outer syntax of a programming language
(Maurice Wilkes)
1968-1972: Structured programming (Edsger Dijkstra); industrial
applications (Harlan Mills & others)
1971: Program Development by Stepwise Refinement (Niklaus
Wirth)
1972: David Parnas‘s articles on information hiding 1974: Liskov
and Zilles‘s paper on abstract data types
1975: Programming-in-the-large vs Programming-in-the-small (Frank
DeRemer & Hans Kron)
1987: Object-Oriented Software Construction, 1st edition
1994: An introduction to Software Architecture (David Garlan and
Mary Shaw)
1995: Design Patterns (Erich Gamma et al.)
1997: UML 1.0

Topic 2: Modern Software
Architecture

Leading Contributors

n  The leading contributors of the modern discipline of
Software Architecture to date are:
q  Dewayne Perry and Alexander Wolf
q  Mary Shaw and David Garlan
q  Len Bass, Paul Clements, Rick Kazman and Linda

Northrup
q  Frank Buschmann et al.,
q  James O. Coplien

144

37

Foundations of Study

n  The seminal work is a 1992 paper by Dewayne E.
Perry and Alexander L. Wolf
q  “Foundations for the Study of Software Architecture”. ACM

SIGSOFT Software Engineering Notes 17(4) pp.40-52
n  Constructed a model of Software Architecture

consisting of 3 components:
q  Elements
q  Form
q  rationale

145

Perry and Wolf, 1992

n  “We use the term ‘architecture’ rather than ‘design’
to evoke notions of codification, of abstraction, of
formal training (of software architects), and of style”

n  Benefits sought
q  Architecture as a framework for satisfying requirements
q  Architecture as the technical basis for design
q  Architecture as an effective basis for reuse
q  Architecture as the basis for dependency and consistency

analysis

146

Basis of the Intuition

n  Perry and Wolf examined other “architectural
disciplines” for lessons
q  Computing hardware architecture

n  Small number of design features
n  Scale achieved by replication of the design elements

q  Network architecture
n  Two kinds of components – nodes and connections
n  Only a few topologies to be considered

q  Building architecture
n  Multiple views
n  Architectural styles
n  Style and engineering
n  Style and materials

147

The Context of Architecture
n  Requirements are concerned with the determination of the

information, processing and characteristics of that information
needed by the user of the system

n  Architecture is concerned with the selection of architectural
elements, their interactions, and the constraints on those
elements and their interactions necessary to provide a
framework in which to satisfy the requirements and serve as a
basis for design

n  Design is concerned with the modularisation and detailed
interfaces of the design elements, their algorithms and
procedures, and the data types needed to support the
architecture and to satify the requirements; and

n  Implementation is concerned with the representations of the
algrithms and data types that satisfy the design, architecture
and requirements.

148

38

The Purpose of Architectural
Specification
n  Architectural specifications are required to be

of such a character that we can
q  Prescribe the architectural constraints to the

desired level
q  Separate aesthetics from engineering
q  Express different aspects of architecture in an

appropriate manner
q  Perform dependency and consistency analysis

149

The Model: elements

n  Software Architecture = {elements, form,
rationale}

n  Elements:
q  Processing elements
q  Data elements
q  Connecting elements

150

The Model: form

n  Form
q  Consists of weighted properties and relationships
q  Weighting is either:

n  Importance of property or relationship
n  Or necessity of selecting among alternatives

q  Properties
n  Define the minimum constraints on the choice of architectural

elements
q  Relationships

n  used to constrain the “placement” of architectural elements
and how they interact

151

The Model: rationale

n  Rationale:
q  Is underlying, but integral
q  Captures the motivation for the choice of style, elements

and form
n  In building architecture

q  Rationale explicates underlying philosophical aesthetics

n  In software architecture
q  Instead explicates the satisfaction of system constraints

n  Functional and non-functional

152

39

Architectural Style

n  Perry and Wolf noted that, distinct from other
architectural disciplines, software architecture
had no named styles

n  They proposed that architectural styles be
used as constraints on an architecture

n  “The important thing about an architectural
style is that it encapsulates important
decisions about the architectural elements
and emphasises important constraints on
their elements and their relationships”

153

Garlan and Shaw

n  David Garlan and Mary Shaw, both of Carnegie
Mellon University, wrote a book, Software
Architecture: Perspectives on an Emerging
Discipline in 1996

n  Identified three levels of software design
n  Introduced four categories of research/development

on software architecture
n  Presented a number of common “architectural

styles”

154

Levels of Software Design

n  The three levels of software design
identified by Garlan and Shaw are:

1.  Architecture
n  Issues involve the overall association of system

capability with components
n  Components are modules

q  their interconnections can be handled in different ways
n  Operators guide the composition of systems from

subsystems

155

Levels of Software Design

2.  Code
q  Issues involve algorithms and data structures
q  Components are programming language

primitives
q  Composition mechanisms include records,

arrays, procedures etc.,

156

40

Levels of Software Design

3.  Executable
q  Issues involve memory maps, data layouts, call

stacks and register allocations
q  Components are bit patterns supported by

hardware
q  Composition and operations described in the

machine code

157

Architectural Styles

n  Garlan and Shaw identify a number of common
architectural styles, characterised by their respective
components and connectors

n  These styles include:
q  Dataflow systems

n  Batch Sequential
n  Pipes and Filters

q  Call-and-Return Systems
n  Main program and subroutine
n  OO Systems
n  Hierarchical systems

158

Architectural Styles

q  Independent Components
n  Communicating processes
n  Event systems

q  Virtual Machines
n  Interpreters
n  Rule-based Systems

q  Data-Centred Systems
n  Database
n  Hypertext Systems
n  Blackboards

159

Bass, Clements and Kazman

n  Len Bass, Paul Clements and Rick Kazman wrote a
book Software Architecture in Practice in 1998
q  From the Software Engineering Institute, based at Carnegie

Mellon University
n  Presented a taxonomy for “architecture”
n  Introduced an “Architectural Business Cycle (ABC)
n  Explained the Software Architecture Analysis Method (SAAM)
n  Described some Architectural Description Languages (ADLs)

160

41

A Taxonomy of “Architecture”

161

Architectural Style

Reference Architecture

Software
Architecture

System
Architecture

Reference
Model

“Reference models, architectural styles and reference
architectures are NOT architectures: they are useful
steps towards architectures….At each successive phase
in this progression, more requirements are addressed,
and more design and development have taken place”

Taxonomy

n  Architectural Style
q  “A description of component types and a pattern of their

run-time control and/or data transfer”
n  Effectively a set of constraints on the architecture that define a

family of architectures
n  Reference Model

q  “A division of functionality together with dataflow between
the pieces”
n  A standard decomposition of a known problem into parts that

co-operatively solve the problem

n  Reference Architecture
q  “A reference model mapped onto components …and the

data flow between the components”

162

The Architectural Business Cycle

163

The Architectural Business Cycle

1.  The architecture affects the structure of the developing
organisation

q  Software units prescribed correspond to work
assignments

2.  The architecture can affect the enterprise goals of the
developing organisation

q  E.g., open up market opportunities, aid efficient
development of product families etc.

3.  The architecture can effect customer requirements for the
next system

q  E.g., through upgradeability etc.,
4.  The architecture adds to the corporate base of experience
5.  The architecture may actually change software engineering

culture

164

42

Topic 3: Software Architecture
and the Built Environment

Architectural Knowledge

§  ADLs and Notions of ‘Software Architecture Styles’ help us
analyze structure better… but how do they help us create
architectures?

§  The built environment has a notion of architecture that
goes back to Ancient Egypt
§  And recently the Royal Institute of British

Architects (RIBA) has tried to define what an
architect needs to know

§  Perhaps architecture offers real lessons, not just
a metaphor?

n  It is interesting and important to examine the fundamentals
of building construction
q  Derive a notion of “architectural knowledge” as

distinct from “vernacular design”

166

Structure

n  An architecture defines the arrangement of structural
elements in a system
q  Relates to form, function and characteristics
q  Architectural style is the underlying structuring principle and

philosophy

n  But any structure contains
a distribution of
responsibility
q  In complex structures this is often
 a sociological as much as a
 technical choice

167 168

Space

n  Construction is both a physical and spatial
transformation of a pre-existing situation

At the most elementary level, a building is a construction of
physical elements or materials into a more or less stable
form, as a result of which space is created which is distinct
from the ambient space.

[Hillier1996]

43

Boundaries

n  Building has a logical aspect too
q  Separates notions of “inside” and “outside”

n  Architecture addresses the complex whole of
interrelationship between such domains

169

The drawing of a boundary establishes not only a physical
separateness, but also the social separateness of a domain – the
protected space – identified with an individual or collectivity which
creates and claims special rights in that domain.
[Hillier1996]

Neighborhoods as Domains

n  The logical structure of an architecture is
based on spatial domains…
q  Buildings, rooms, alcoves, etc.

n  And connection domains between them...
q  Streets, alleys, hallways, corridors, doors, etc.

n  And on how they are configured as a whole
q  Christopher Alexander strongly reflects this idea of

a configuration based on logical coupling,
cohesion, and connections in some patterns

170

Neighborhood Boundary
“ The strength of the boundary is essential to a
neighborhood. If the boundary is too weak the
neighborhood will not be able to maintain its own
identifiable character….”

“ … Encourage the formation of a boundary around
each neighborhood, to separate it from the next door
neighborhoods. Form this boundary by closing down
streets and limiting access to the neighborhood….”

“ … Place gateways at those points where the
restricted access paths cross the boundary; and
make the boundary zone wide enough to contain
meeting places for the common functions shared by
several neighborhoods.”

[Alexander+1977] (pp89-90)

171

Exercise: Configurational Knowledge

172

Consider the
squares in this
grid to be spaces;
the yellow lines to
be walls.

At B3 is an
external entrance;
use exactly 8
other internal
entrances to
connect the
rooms so that
every room is
accessible

A B C

1

2

3

44

Configuration of Space

173

a b c

Configuration of Space

n  In the previous slide 3 notional courtyard
buildings are shown
q  Same basic physical structures and cell division
q  Same number of internal, external openings
q  Lower figure highlights space as against normal view of

‘structure’ above
n  ‘Only’ difference is the location of cell entrances

q  But this radically changes the patterns of movement
through the buildings

q  Which offers more opportunities for “private” space?

174

Dependencies

n  Consider rooms A2, B2 and C2 in each of the
configurations a, b and c and the routes by which
they can be reached etc.

n  Which other rooms is each directly dependent on?
n  Which other rooms is each indirectly dependent

upon?
n  Which other rooms directly depend on A2,B2 and

C2?
n  Are there any parallels with software?

175

Software and “Space”

n  Software does not deal with physical spaces
n  But space is not merely a physical construct in

architecture of the built environment
q  Also embodies notions of logical and social spaces

n  We can consider modules, packages, components
etc., to occupy virtual spaces in software
q  And connectors to be access paths to these spaces which

make them interdependent
n  Therefore the knowledge of how to put modules and

connectors together appropriately is configurational

176

45

Software, Space and Dependency

177

A

A

A
B

B

B

C

Architecture Enables Creative Design

n  Design is a creational and intentional act
q  Conception and construction of a structure on

purpose for a purpose
n  ‘Good’ architecture provides

forms which
enables creativity rather
than dictate design
q  Form is liberating

178

Design is the activity of
aligning the structure of the
application analysis with
the available structures of
the solution domain

[Coplien1999]

Significance of Office Buildings

n  Icons of the 20th Century
q  Office towers dominate the skylines of cities on

every continent
q  At least 50% of the population of industrialised

countries work in offices
n  In function they stand closest to computing

q  As foci for administrative and information
generating work
n  “Computer” originated as a term for number

crunching clerks!

179

Office Architecture: 2 Traditions

n  North American vs. North European
q  Skyscrapers in Chicago, ground hugging buildings in

Stockholm
q  City centre in NA, suburban in NE
q  Tall and deep in NA, short and narrow in NE
q  Space efficient in NA, rambling in NE
q  Corporate domination of requirements in NA, workers’

requirements better reflected in NE

180

46

The North American Tradition

n  Forces driving the North American tradition
q  Late 19th century economic boom in Chicago and

New York
q  Rapid exploitation of new technology

n  Steel frame, elevator, electricity, air conditioning
q  Advances in real estate financing, city planning

n  Buildings as multipliers of land value, speculator
and regulator struggle, “form follows finance”

q  Taylorist management theory

181

Exemplar: Empire State Building

182

Exemplar: Empire State Building

n  Architectural features of the Empire State
Building 1930-31
q  Standardised construction elements to maximise

efficiency
q  Highly service central core on each floor
q  Surrounded by continuous “race track” of

subdivisible, rentable space
q  Relations between landlord and tenant dominate

other (e.g. functional) concerns

183

The North European Tradition

n  Forces driving the North European tradition
q  North European cities have long histories

n  Historically established patterns of land ownership
q  Financing

n  Direct Bank loans, rather than share issues, dominate the
financing of construction

n  Offices often customised for specific uses by client
q  Social democratic political climate

n  Statutory based negotiating procedures for working
conditions, etc.

184

47

Exemplar: Ninoflex Building

185

Exemplar: Ninoflex Building

n  Architecture of the Ninoflax Building, 1962
q  “Office landscaping”, open plan interiors, wall to

wall carpeting, break areas
q  Complex, dynamic, “more organic” geometry
q  Based on a theoretical understanding of office

processes and communication, rather than needs
of syndicated investors/speculators

186

Office Architecture vs. Design
n  Complex forces shaping the two traditions

reveal themselves only in retrospect
q  Most office architects took (at least some) of the

prevailing forces for granted
q  The essentially architectural knowledge was

hidden, and transmitted culturally

187

It is clear from this analysis that architecture does not
depend on architects, but can exist within the context of
what we would normally call the vernacular.
[Hillier1996]

Architecture as Configurational
Knowledge
n  To summarise, architectural knowledge

q  Deals with process, organisation as well as “product”
q  Recognises that the “whole” is greater than the sum of its

parts
n  structure “carves out” space

q  That a design choice in one place will have unintended side
effects elsewhere that have to be imagined
n  and dealt with in design

q  Deals with multiple kinds of “spaces”
n  Physical, logical, social

188

48

Architecture as Non-discursive
Knowledge
n  Architecture is knowledge “to-design-with” rather

than knowledge “of” a design
n  This kind of knowledge is inherently difficult to

express (“non-discursive”)
q  Creative, not analytical thought

n  Is typically acquired socially
q  “learning-by-doing”

n  Only becomes explicit when different sets of
configurational rules are compared and contrasted
q  E.g., different “styles” of office building

189

Exercise: Non-discursive Knowledge

190

1 5

6

9

3

4

7

8

1 5

6

9

3

2 4

7

8

1 5

6

9

3

2 4

7

8

2
12 14 ?

1 25 ?

14 15 ?

Explicit Architecture

n  Architectural knowledge is, therefore, normatively
q  Configurational
q  Non-discursive

n  It tends to be made explicit only when there is a
need to contrast normative approaches
q  To distinguish Gothic and Romanesque cathedrals

n  …But it always exists, even in vernacular design
q  Where it is implicit: “the way things are done here”

191

Three Filters of Applied Architectural
Knowledge
Function imposes restraints on the configuration of

space. Hillier (1996) suggests that three ‘filters’ are
applied between the ‘field of possibility’ and the
architectural reality:

§  Generic Function
§  What type of building is it?

§  Cultural requirements for that type of building
§  What aspects are typical for this kind of building?

§  Idiosyncrasies of structure and expression
§  What uniquely distinguishes this building from all others?

192

49

Building for Change

Usage centered approach to office building requires
a process that embraces change over time
Changeability is also a feature of the product

193

The crux both builders and architects face is coming to terms with time. In
technical terms this means shifting from a professional industry based on the
assumption that the relationship with the client is synchronic (that is, each
transaction is separate and each comes at a unique moment in time) whereas
we should be trying to devise professional professional and technical services
which are diachronic (that is, continuing and developing through time).

[Duffy+1998]

Designing in Slippage

n  Flexible process requires building in slippage
n  Recognising that change is both inevitable and

necessary over time
n  “Leeway” has to be designed in so that products do

not become brittle when faced with change
q  We don’t want to have to start again from scratch

194

Shearing Layers

n  Shearing layers [Brand1994] underpin the
process of new office design
q  Build in slippage between “layers” so that

buildings don’t tear themselves apart as usage
changes

q  Layers constructed on the basis of different
change rates

q  Changes therefore get localised to particular
layers

195

Brand’s Six Ss

196

SITE

STRUCTURE

SKIN

SPACE PLAN

SERVICES

STUFF

50

The Six S’s of Shearing Layers (1)

n  Site
q  Permanent or semi-permanent
q  Determined by geology, land-ownership etc.

n  Structure
q  Typically sixty years for an office building

n  Skin
q  Typically thirty year?

197

The Six S’s of Shearing Layers (2)
n  Services

q  Plumbing, wiring etc., changes every 7 years or so
n  Space Plan

q  The division and sub-division of ‘social spaces’
tends to change every 5 years or so on average

n  Stuff
q  Furniture, plantpots, other movables etc., can

change daily

198

Shearing Layers

199

Site

Structure

Skin

Services

Space Plan

Stuff

1

0..*

is built on

1

1

1..*

*

Lessons for Software Architecture

n  ‘Architectural Knowledge’ is fundamental to
successful, usable design in the new millenium
q  It can be regarded as design imagination

n  It is by nature ‘configurational’ and often tacit
q  Especially in vernacular design

n  It is knowledge that is socially acquired
q  “Culturally transmitted”

n  It is both deontic and time-ordered
n  It is not reducible to “high level structure”

q  Affects process and organisation too

200

51

Topic 4: Masterplans and
Piecemeal Growth

The Current Debate on Software
Architecture
n  October 1999 special issue of IEEE Software

exposed a debate
q  Edited by J.O. Coplien
q  Editorial entitled “Re-eveluating the Metaphor…”
q  Included text of Chris Alexander’s speech to OOPSLA 1996

conference
n  Identified two “camps”

q  Masterplan vs Piecemeal Growth
q  In the Masterplan camp: Carnegie Mellon’s SEI
q  In the Piecemeal Growth camp: The Patterns Movement

202

Characteristics of the Masterplan
“camp”

n  Considers “Architecture” to be gross structure
q  Constrains, but is separate from, “lower levels of design”

n  Utilises formal methods to present the semantics
of architecture

n  Emphasis is on design in the abstract
q  Drawings, models as “blueprints” to be completed before

implementation
q  “Architecture is in the documentation”- Kazman

n  Formal software engineering processes used to
guide practical software building
q  E.g., Capability Maturity Model (CMM)
q  Architectural Tradeoff Analysis Method (ATAM)

203

Characteristics of Piecemeal Growth
approach
n  Rejection of abstract design

q  Cognitive complexity overcomes individual capacity to
understand

n  Stress on architecture existing at all levels of scale
q  Including “fine detail”

n  Emphasis on an holistic, human-centred approach
to design
q  Implies a crisis of traditional Computer Science

n  Utilisation of “lightweight” processes
q  E.g., Scrum, DSDM, Xtreme Programming

204

52

Philosophical Differences

n  Carnegie Mellon’s SEI sees architecture as
an extension of “software engineering”
q  Hence reliance on traditional Computer Science

themes of formality, automation, process
n  Holds to a “Logical Positivist” structure of

knowledge

205

Logical Positivism

n  Logical Positivism is a philosophy of science
q  Roots date back to Decartes
q  Dominated academia in the nineteenth, early twentieth

century
q  Now in retreat in all disciplines except Computer Science

n  Positivism underpins “The Scientific Method”
q  Scientist is neutral observer/recorder of scientific truths
q  Theories are established by reproducing observed

phenomena in controlled laboratory experiments to test
hypotheses

206

The Positivist Hierarchy of Knowledge
n  Practical knowledge follows a linear,

hierarchical model in this philosophy
n  First science, then engineering (“applied science”),then

problem-solving

207

Form of Knowledge Role performed

Science Discovered by scientist

Engineering Science applied by
engineers

Problem Solving Techniques applied by
craftspeople

Critique of “Computer Science”

n  The alternative philosophy is “holistic”
q  Allows for different forms of knowledge
q  Utilises science from many different disciplines

n  E.g., anthropology, sociology

n  Regards computing as a design discipline
q  As opposed to a branch of mathematics

n  N.B., this critique is broader than the debate in
Software Architecture
q  E.g., Client-led Design, Human Computer Interaction,

criticisms of Prof. Bruce Blum,Michael Jackson’s Problem
Frames

208

53

Software Development: Blum’s
Critique
n  The essential aim of any software development is

the construction of a solution(So) in software that
meets a perceived need(N)
q  N → So

n  Practically, most processes involve specifying (Sp)
the solution (So) in advance of constructing it
q  N → So {N → Sp,Sp → So}

209

Needs Imply Solutions

210

(business)
Need

(requirements)
Specification

(software)
Solution

0..1

*
0..1

implies

implies

*

The Process of Software Development

211

Identify Needs

Specify Requirements

Design and
Construct Solution

Transformations

The Key Transformations

q  Recall that the mapping of a Need (N) to a Software
Solution (So) involves two transformations
n  N → So {N → Sp,Sp → So}

q  Computer Science has developed formal means to aid in
the production of a solution that meets a requirement
n  Sp → So
n  “The program in the computer” (Bruce I. Blum)

q  We are historically weak in ensuring that the specification
meets a need in the first place!
n  N → Sp
n  “The program in the world” (Bruce I. Blum)

212

54

Software Development Processes

n  Most software development processes are
q  Solution-oriented

n  The focus is on the ‘program-in-the-computer’ as an end-
product

q  Specification-driven
n  The process is initiated by a functional specification and

tested against it

n  Deadlines tend to squeeze out design
q  Since many solutions can meet a specification, effort spent on

choosing the best solution is not on the critical path of the project
q  N.B.All other design disciplines recognise that “problem

setting” (creating the spec.) is also part of design

213

Characteristics of a New Paradigm

n  ‘Use value’ carries a higher premium than
‘provable correctness’
q  The ultimate test of the ‘program in the computer’ is its

usefulness as a ‘program in the world’
n  An increased attention to Non-functional

Requirements
q  Operational (performance, robustness etc.)
q  Developmental (reuse, ease-of-maintenance etc.)

n  The importance of ‘Design’
q  ‘form-fitting’ to meet the above is non-trivial

214

Alexander and Piecemeal Growth

n  Christopher Alexander’s view can be found in his
pattern, Gradual Stiffening

n  He contrasts the work of the master carpenter…
q  Seems to work smoothly, effortlessly to construct a

quality product
q  But actually builds in slippage and makes corrections

through each “iteration”
n  … with the novice apprentice

q  “panic stricken by detail”
q  Needs a complete blueprint before making first step

n  For FEAR of irrecoverable failure

215

Alexander: Gradual Stiffening

“ The fundamental philosophy behind the use of
pattern languages is that buildings should be uniquely
adaptable to individual needs and sites; and that
plans of buildings should be rather loose and fluid, in
order to accommodate these subtleties…”

“ … Recognise that you are not assembling a building
from components like an erector set, but that you are
instead weaving a structure which starts out globally
complete, but flimsy; then gradually making it stiffer
but still rather flimsy; and only finally making it
completely stiff and strong….”

216

55

What is a Design Pattern (1)?

“There are millions of particular solutions to any
given problem; but it may be possible to find some
one property which will be common to all these
solutions. That is what a pattern tries to do”

217

What is a Design Pattern(2)?

“ Each pattern describes a problem
which occurs over and over again in our
environment, and then describes the core
of the solution to that problem, in such a
way that you can use this solution a million
times over without ever doing it the same
way twice”

218

What is a Design Pattern (2)?

“…towns and buildings will not be able to come alive
unless they are made by all of the people in society
and unless these people share a common pattern
language within which to make these buildings, and
unless the pattern language is alive itself.”

“…we present one possible pattern language….the
elements of this language are so-called patterns….”

 “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use
this solution a million times over without ever doing it the
same way twice”

219

Patterns vs. Pattern Languages

 For Alexander
n  Patterns do not exist outside of a wider

“pattern language”
q  In which the use of one pattern sets the context

for the use of others
n  The pattern language is shareable amongst

all “stakeholders” in a development
 ADAPTOR represents (part of) an attempt to
see whether pattern languages exist for
software development

220

56

Pattern Languages as Process

n  A Pattern Language is a system of patterns
q  But recall that patterns are abstract solutions
q  They cannot be composed together in advance to produce a

solution

n  Rather each pattern when applied changes the
context of the solution
q  And creates a new context for the next pattern to be applied

n  Solution is therefore “emerges” from the process
itself

n  N.B. This corresponds to modern “reflective
design” theory
q  E.g., D. Schön “The Reflective Practitioner”

221 222

Example of Two Organisational
Patterns

Sometimes
development teams
especially in a migration
pilot project are distracted by
“noise”

So - use “Firewall”
to insulate the group
from unwarranted
distractions

Then use a “Gatekeeper”
to filter incoming
information and present it

System Composite

n  A variation of the Composite
pattern [Gamma 1995]
allows us to describe any
system as recursively
composed of subsystems

n  We can utilise high-level
system-wide techniques
recursively

223

Software
System

1..*

1..*
Component

Package Connector
1..* 2

links

Developing an Object Model of the
Legacy System
n  Using Scenarios Define

the Problem [Coplien
1995] we employ Use
Case analysis to
develop descriptions of
system and sub-system
functionality

n  (Perhaps using Form Follows
Function to partition)

224

Actor

Use Case 1

Use Case 2

Use Case 3

57

Separating Concerns

n  The ‘Shamrock’ pattern identifies 3 kinds of
packages
q  The Concept Model(s)
q  The Interaction Domain(s)

n  E.g., GUI’s, protocols etc.,
q  The Infrastructure Domain(s)

n  Concurrency, Persistence etc.

n  ‘Time-Ordered Coupling’
q  Reflects Brand’s Shearing Layers

n  See Appendix A

225

Encapsulating and “Wrapping”
Subsystems
n  To each subsystem add a

Façade object which will
present itself as the (sub)
system interface to all of its
clients. At this stage, the
system will be a set of
interdependent facades
behind which sits legacy
code

226

Develop Semantic Wrappers

n  For the parts of the system
which will be wrapped,
develop objects that reflect
the key abstractions
q  N.B. This requires building

an Object analysis model of
the legacy system

n  The implementation of
these objects calls existing
legacy code…until you want
to change that, too!
(Semantic Wrapper)

227

Topic 5: Architecture
Description Language (ADL)

58

229

Architecture Definition Languages
n  An architecture is generally considered to consist of components and the connectors

(interactions) between them however we are inconsistent and informal in their use and
therefore
q  Architectural designs are often poorly understood and not amenable to formal analysis or simulation.

n  (Remember.. How can I evaluate on Architecture over another?)
q  Architectural design decisions are based more on default than on solid engineering principles.

q  Architectural constraints assumed in the initial design are not enforced as the system evolves.

n  Unfortunately there are few tools to help the architectural designers with their tasks.

n  To address these problems, formal languages for representing and reasoning about
software architecture have been developed.

n  These languages, called architecture description languages (ADLs), seek to increase the
understandability and reusability of architectural designs, and enable greater degrees of
analysis.

n  In contrast to Module Interconnection Languages (MILS), which only describe the structure
of an implemented system, ADLs are used to define and model (the) system architecture
prior to system implementation.

230

ADL Requirements

n  Our Original Dilemma
q  When to pick our architecture over another ?

n  Characteristics of Architectural Descriptions
q  Common Patterns of Software Organization

n  What do all these boxes and interconnecting lines really mean?
q  Data flow ? Data dependencies?, Control ? , Functional dependencies ?

Functional Sequences ?. States & Modes ?
q  therefore we really do need a more precise way in which to capture and

describe an architecture
q  Examples of Common Components and Interconnections:
q  Examples of Interactions between these components
q  Critical Elements of a Design Language
q  The Language Problem for Software Architecture

231

ADL Requirements
n  Examples of Common Components and

Interconnections
q  Computation, Memory, Server, Controller, Link (Interfaces), (list

others)

n  Examples of Interactions between these components
q  Procedure Call, Data Flow, Message Passing, Shared Data, ..

(list Others)

n  Note that components and interactions are evident
across all the architecture styles and their variants.
q  The good thing .. A common set of primitives (Abstract concepts

in an earlier lecture).

n  Critical Elements of a Design Language
n  The Language Problem for Software Architecture

232

59

ADL Requirements
n  Critical Elements of a Design Language

q  Components: Primitive elements and their values
n  (give examples)

q  Operators: Functions that combine Components
n  (give examples)

q  Abstraction: Naming rules for components and operators
n  (give examples)

q  Closure: Rules that determine which abstractions can be added to
 the classes of components and operators

n  (give examples)
q  Specification: Association of semantics with syntactic forms.

n  (give examples)

233

ADL Requirements
n  The Language Problem for Software Architecture

q  Note: SWA deals with the overall allocation of functions to
components, with data and interface connectivity and overall
system balance (task allocation, file allocation, dead-lock
recovery, fault-tolerance, etc….)
n  Do conventional programming languages support this ?
n  Does UML support this ?
n  Does “Z” support this ?
n  So where do we go from here ?

q  So we need a way to allow us to combine the components,
operations, interfaces etc into an ARCHITECTURE.
n  So then why not just use Ada, and CORBA, … etc.?
n  So where do programming languages fit in the scheme of things ?

234

ADL Requirements
n  An ADL therefore must:

q  Support the description of components and their
interactions
n  Why ?

q  Handle large-scale, high-level designs
n  Why?

q  Support Translation of Design to a Realization
n  Why ?

q  Support user-defined or application Specific Abstractions
n  Why?

q  Support the Disciplined selection of architectural styles.
n  Why ?

235

ADL Requirements
n  Composition:

q  “It should be possible to describe a system as a composition of
independent components and connections”
n  This allows us to combine independent elements into larger systems

(this is really critical in Network centric independent systems that
demonstrate new emergent capabilities when combined together)

n  An ADL therefore:
q  Must allow the hierarchical decomposition of and assembly of a system.
q  Final Decomposed elements must be independent (stand-alone) pieces in

their own right.
q  Must be able to separate architectural design approach from realization

approach.
q  Note: the ADL closure rule must allow us to view entities of an

architectural description as primitive at one level and as composite
structures at a lower level of decomposition.

n  Why is this important ?
236

60

ADL Requirements
n  Abstraction:

q  “It should be possible to describe the components and their interactions
within the software architecture in a way that clearly and explicitly
describes their abstract roles in a system”
n  This property will allow us to describe explicitly the kind of architectural

elements used and the relationships between the elements
n  Note the contrast with high level programming languages vs ADL.
n  For example:

q  It should be possible to describe an architecture without having to relay on implicit
coding conventions or unstated assumptions about the intended realization.
§  (Remember how benign ACME looks)

q  Note: It should be able to indicate explicitly that components are related via a Client-
Server relationship (regardless of how they might be implemented) NOT implicitly by
looking at lower level IDL or procedure calls.

q  For example I could implement a C-S relationship in “C”. But you would not know
that we have C-S relationship unless you went digging through the low level code.)

q  We want to get away from the code and IDL level. (those are implementation
realization, not abstract roles. Ie. We want to be at the Client module and a Server
Module level.
§  Service based Architecture ?

237

ADL Requirements
n  Reusability:

q  “It should be possible to reuse components, connectors, and
architectural patterns in different architectural descriptions, even
if they were developed outside the context of the system”
n  This property will allow us to describe families of architectures as an

open-ended collection of architectural elements, together with
constraints on the structure and semantics.
q  These Architectural patterns require further instantiation of substructure

and indefinite replication of relations.
§  See the GOF book.

q  Note that programming languages permit reuse of individual components,
FEW make it possible to describe generic patterns of components and
connectors.
§  Programming languages provide module constructs only (Ada) few allow us to

talk about collections of modules or structural patterns.
§  For example a pipeline architecture uses pipes & filters AND also constrains the

topology to be a linear sequence (but we cannot describe the topology).

238

ADL Requirements

n  Configuration:
q  “Architectural Descriptions should localize the description of

system structure independently of the elements being structured.
They should also support dynamic reconfiguration.”
n  This property allows us to understand and change the architectural

structure of a system without having to examine each of the systems
individual components.

n  Therefore an ADL should separate the description of composite
structures from the elements in these compositions so that we can
reason about the composition as a whole.

n  See the comment on dynamic architectures in your text.

239

ADL Requirements

n  Heterogeneity:
q  “It should be possible to combine multiple, heterogeneous

architectural descriptions”
n  This property will allow us to:

q  Combine single combined different architectural patterns into a single
system.

q  Combine components written in different languages
§  (marshaling).
§  Module connection systems that support interaction between distinct address

spaces often provide this capability (see book examples)

240

61

ADL Requirements

n  Analysis:
q  “It should be possible to perform rich and varied analyses of

architectural descriptions”
q  Note that current module connection languages (Ada) provide only weak

support for analysis. (only type checking at component boundaries)
q  Note how JINI has started to address the issue of event broadcast.
q  Need to associate an specification with an architecture as they become

relevant to a particular components, connections, and patterns.

241

Problems with Existing Languages

n  Informal Diagrams
n  Programming Language Modularization

Facilities
n  Module Interconnect Languages
n  Support for Alternative Kinds of Interaction
n  Specialized Notation for Certain Architectural

Styles

242

Informal Diagrams
n  Informal diagrams are used to express

many ideas:
q  the boxes can represent anything from

components to functions,
q  the interconnections are equally vague at

identifying the interaction they were meant to
convey.
n  Data flow? , Control Flow? , Event Handling?

Inheritance ? , etc.
q  Note that although they intuitively convey

the architecture, they are limited in the use
for analysis

243

The System

UI Functions.. DBMS

DBMS

Functions..

UI

DBMS Functions..

UI

Functions..

UI

WS (1) WS (…)

UI

WS (n)

Issues with Programming Language
Modularization Facilities

n  This approach uses a programming language (PL) modularization
facilities to convey the description of the architecture.

n  These languages are based on the notion that modules define an
interface that declares:
q  Exports: The services the module provides
q  Imports: the Services on which it relies

n  Issues:
q  Composition:

n  PL provide poor support for the independent composition of architectural
elements

n  Inter-module connection is determined by name matching. Good for PL but poor
for AD.

n  Naming Exports and Imports forces interconnection structure to be embedded in
the module definitions.
q  Consequently, modules can rarely be REUSED in another system for which they were

not designed.

244

62

Issues with Programming Language
Modularisation Facilities

n  Abstraction:
q  PL represent module interfaces as a collection of independent procedures,

data with types and possibly constraints.
q  The result is that the High Level Architecture has to be described in these low

level implementation primitives of the PL.
q  Usually the interconnection is also limited to data sharing or procedure calls.

n  So how do we capture the other types of interconnections such as pipes, message
passing, etc.

n  Simplicity of the ability to describe an interconnection therefore has both positive
and negative effects.
q  For programming, we know the types,
q  However we do not have the freedom to describe the system interactions not can we

describe the architectural components (services)
q  Forces the designer to think in only the terms of the PL primitive constructs
q  Limits reusability as one set of interconnections may not be valid for another architecture
q  Limits the level of abstraction that can be used to describe interconnections.

245

Issues with Programming Language
Modularisation Facilities

n  Consequence of Abstraction:
q  A MAJOR part of the design, (the

interconnection) between modules
at the ARCHITECURE level is
therefore buried in procedure calls
and shared data access, is
distributed across the modules, and
difficult to change because of
module inter-dependencies.

n  Reuse:
q  Modules explicitly declare their

exports and imports, they do NOT
declare the export and import
REQUIREMENTS.

q  Note that module definitions ONLY
supports the reuse of the module.
There is NO support for reuse of the
patterns of composition.

246

The System

UI Functions.. DBMS

DBMS

Functions..

UI

DBMS Functions..

UI

Functions..

UI

WS (1) WS (…)

UI

WS (n)

Issues with Programming Language
Modularization Facilities

n  Configuration:
q  The requirements of modules to

define EXPORTS and IMPORTS
leads to a condition where the
connectivity of the architecture is
distributed throughout the module
definitions.

q  Makefiles are the only single place
where Connectivity dependencies
are visible.

q  Note that we only get a notion of
the dependency NOT the nature of
the dependency or design intention.

q  Also the declarations of EXPORTS
and IMPORTS is STATIC. There is
no notion of dynamic
reconfiguration.

247

The System

UI Functions.. DBMS

DBMS

Functions..

UI

DBMS Functions..

UI

Functions..

UI

WS (1) WS (…)

UI

WS (n)

Issues with Programming Language
Modularization Facilities

n  Heterogeneity:
q  Modules written in different

languages cannot (generally) be
combined or require the use of
special purpose middleware
n  (Actually the approach DEC took to

their language interface easily
allowed Fortran to call PL/I to call C
… etc. (on the same machine).

q  Due to the limited number of
abstract primitives we can only
describe the interactions in the low
level primitives available.

q  So we do NOT have a way in
which to express architectural
paradigms, let alone combined
them.

248

The System

UI Functions.. DBMS

DBMS

Functions..

UI

DBMS Functions..

UI

Functions..

UI

WS (1) WS (…)

UI

WS (n)

63

Issues with Programming Language
Modularization Facilities

n  Analysis:
q  Given a set of modules – What

is the Architecture ?

q  The current approach of name
matching (modules and
EXPORTS and IMPORTS)
makes it difficult to check for
consistency of interconnection.

q  Name matching DOES NOT
assure proper use !!

249

The System

UI Functions.. DBMS

DBMS

Functions..

UI

DBMS Functions..

UI

Functions..

UI

WS (1) WS (…)

UI

WS (n)

SADL: Structural Architecture Description Language
n  http://www.sdl.sri.com/programs/dsa/sadl-main.html
n  http://www.sdl.sri.com/programs/dsa/README.html

n  SADL (Stanford): A Language for Specifying Software Architecture
Hierarchies
q  Sadl is programming language independent, intended for both

abstract and concrete modeling of system architectures.

q  The Sadl language provides a precise textual notation for describing software
architectures while retaining the intuitive box-and-arrow model.

q  (Sadl) makes a clean distinction between several kinds of architectural objects
(e.g., components and connectors) and make explicit their intended uses.

q  The Sadl language provides facilities for specifying architectures and for also
specifying well-formed ness constraints on particular classes of architectures.

n  For example, it is possible to specify not only the kinds of components and connections
in, client-server and blackboard systems, but also the intended configurations of the
components and connections.

n  Sadl can be used to describe the architecture of a specific system or a family of systems.

250

SADL: Structural Architecture Description Language

q  A vertical hierarchy serves to bridge the gap
between abstractions in architectures and the
more primitive structural concepts in conventional
programming languages.

q  Each level in a vertical hierarchy typically is
described using a different vocabulary, reflecting a
change in representation.
n  For example, a pipe-and-filter architecture would be

described using a different vocabulary than an event-
based architecture.

q  A horizontal hierarchy is analogous to ``bubble
decomposition'' in dataflow modeling, where the
same vocabulary is used to describe every level in
the decomposition.

251

SADL: Structural Architecture Description Language

q  The Sadl language is intended to be used in describing both vertical
and horizontal hierarchy and in relating different levels of
representation by means of mappings.

q  They also make it possible to reason about the relationship among

architectures in a hierarchy and the relation between the hierarchy
and its implementation.

q  For example, we can determine whether the architectural objects in
one architecture are present in the other even if there is a change in
representation.

q  We also can show that, if a particular communication path is not
allowed in one architecture, it is not allowed in others in the hierarchy.

q  An architecture hierarchy may describe a specific system or a family
of systems.

252

64

SADL: Structural Architecture Description Language

n  Sadl can be used to represent the following architectural
elements.

n  1. Architecture. An architecture is a, possibly
parameterized, collection of the following items.

n  (a) Component. A component represents a locus of
computation or a data store.
q  The various types of components include a module, process,

procedure, or variable.
q  A component has a name, a type (a subtype of type

COMPONENT), and an interface, the ports of the component.
q  A port is a logical point of interaction between a component and

its environment.
q  A port has a name, a type, and is designated for input or output.

253

SADL: Structural Architecture Description Language

n  (b) Connector.
q  A connector is a typed object (a subtype of type CONNECTOR)

relating ports.
q  Every connector is required to accept values of a given type on

one end and to produce output values of the same type on the
other.

n  (c) Configuration.
q  A configuration constrains the wiring of components and

connectors into an architecture.
q  A configuration can contain two kinds of elements.

n  Connections. A connection associates type-compatible connectors
and ports.

n  Constraints. Constraints are used to relate named objects or to place
semantic restrictions on how they can be related in an architecture.

254

SADL: Structural Architecture Description Language

n  Mapping.
q  A mapping is a relation that defines a syntactical interpretation

from the language of an abstract architecture to the language of a
concrete architecture.

n  Architectural style.
q  A style consists of a vocabulary of design elements, well formed-

ness constraints that determine how they can be used, any
semantic constraints needed for refinement, and a logical
definition of the semantics of the connectors associated with the
style.

q  A constraint is declarative and might say, for example, that clients
initiate communication with servers, but not vice versa.

q  A given architecture may be homogeneous, involving one style,
or heterogeneous, involving multiple styles.

255

SADL: Structural Architecture Description Language

n  Refinement pattern.
q  A refinement pattern consists of two architecture schemas, an

association of the objects in the two schemas, and possibly
constraints on one or both schemas.

q  An instance of a pattern is formed by matching schema variables
against the appropriate portions of Sadl specifications.

n  Components, interfaces, connectors, and constraints:
q  Are treated as first-class objects --- i.e., they are named and

typed objects that can appear as parameters.
q  They can be refined into (decomposed, aggregated, or

eliminated) objects in more concrete architectures.

256

65

257 258

259 260

66

261 262

263 264

67

265 266

267 268

68

269 270

Architectural Description Languages

n  Architectural Description Languages can be
evaluated or described by listing the
following:
q  System-oriented attributes
q  Language-oriented attributes
q  Process-oriented attributes

271

ADLs: System-Oriented Attributes

n  How suitable is the ADL for representing a particular
type of application?

n  How well does the ADL allow descriptions of
architectural style?

n  What broad classes of system can have their
architectures represented in the ADL?
q  E.g., hard real-time, distributed, embedded etc.,

272

69

ADL’s: Language-Oriented Attributes

n  Syntax and semantics formally defined?
n  Does the ADL define completeness for an

architecture
n  Does the ADL support the ability to add new

types of components, connectors
n  How easily is the software architecture

description modified?
n  How saleable are its descriptions etc.,

273

ADL’s: Process-Oriented Descriptions

n  Is there a textual editor or tool for manipulating ADL
text?

n  Is there a graphical editor?
n  Can the tool import information from other

descriptions into the architecture?
n  Does the ADL support incremental refinement?
n  Does the ADL support comparison between two

architectures?

274

Topic 6: Architectural Styles

Architectural Styles

n  Shaw and Garlan present a number of architectural
styles, identified by asking:
q  What is the design vocabulary ?

n  types of connectors and components
q  What are the allowable structural patterns?
q  What is the underlying computational model?
q  What are the essential invariants of the style?
q  What are some common examples of its use?
q  What are the advantages/disadvantages of use?
q  What are the common specialisations?

276

70

277 278

279 280

71

281 282

283 284

72

285 286

287 288

73

289 290

291 292

74

293 294

295 296

75

297 298

299 300

76

Software architecture styles

301

Aim similar to Design Patterns work: classify styles of
software architecture
Characterizations are more abstract; no attempt to
represent them directly as code

Software architecture styles

302

An architectural style is defined by

Ø Type of basic architectural components
(e.g. classes, filters, databases, layers)

Ø Type of connectors
(e.g. calls, pipes, inheritance, event broadcast)

Architecture styles

303

Overall system organization:
Ø  Hierarchical
Ø  Client-server
Ø  Cloud-based
Ø  Peer-to-peer

Individual program structuring:
Ø  Control-based

•  Call-and-return (Subroutine-based)
•  Coroutine-based

Ø  Dataflow:
•  Pipes and filters
•  Blackboard
•  Event-driven

Ø  Object-oriented

Hierarchical

304

Each layer provides services to the layer above it
and acts as a client of the layer below
Each layer collects services at a particular level of
abstraction
A layer depends only on lower layers
Ø Has no knowledge of higher layers

Example
Ø Communication protocols
Ø Operating systems

77

Hierarchical

305

Components
Ø Group of subtasks which implement an abstraction at
some layer in the hierarchy
Connectors
Ø Protocols that define how the layers interact

Hierarchical: examples

306

THE operating system (Dijkstra) The OSI Networking
Model
Ø Each level supports communication at a level of
abstraction
Ø Protocol specifies behavior at each level of abstraction
Ø Each layer deals with specific level of communication
and uses services of the next lower level

Layers can be exchanged
Ø Example: Token Ring for Ethernet on Data Link
Layer

OSI model layers

n  The system you are designing
n  Data transformation services, such

as byte swapping and encryption
n  Initializes a connection, including

authentication
n  Reliably transmits messages

307

Transmits & routes data within network

Sends & receives frames without error

Sends and receives bits over a channel Physical

Data Link

Network

Transport

Session

Presentation

Application

Hierarchical style example

308

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Use service of
lower layer

Virtual
connection

78

Hierarchical: discussion

309

Strengths:
Ø Separation into levels of abstraction; helps partition
complex problems
Ø Low coupling: each layer is (in principle) permitted to
interact only with layer immediately above and under
Ø Extendibility: changes can be limited to one layer
Ø Reusability: implementation of a layer can be reused

Weaknesses:
Ø  Performance overhead from going through layers
Ø  Strict discipline often bypassed in practice

Client-server

310

Network Server

Components
Ø Subsystems, designed as independent processes
Ø Each server provides specific services, e.g. printing,
database access
Ø Clients use these services Connectors
Ø Data streams, typically over a communication
network

Client

Client

Client

Client -server example: databases

311

Clients: user applications
Ø  Customized user interface
Ø  Front-end processing of data
Ø  Initiation of server remote procedure calls
Ø  Access to database server across the network

Server: DBMS, provides:
Ø  Centralized data management
Ø  Data integrity and database consistency
Ø  Data security
Ø  Concurrent access
Ø  Centralized processing

Client-server variants

312

Thick / fat client
Ø Does as much processing as possible
Ø Passes only data required for communications and
archival storage to the server
Ø Advantage: less network bandwidth, fewer server
requirements
Thin client
Ø Has little or no application logic
Ø Depends primarily on server for processing
Ø Advantage: lower IT admin costs, easier to secure,
lower hardware costs.

79

Client-server: discussion

313

Strengths:
Ø  Makes effective use of networked systems
Ø  May allow for cheaper hardware
Ø  Easy to add new servers or upgrade existing servers
Ø  Availability (redundancy) may be straightforward

Weaknesses:
Ø Data interchange can be hampered by different data
layouts
Ø Communication may be expensive
Ø Data integrity functionality must be implemented for
each server
Ø Single point of failure

Client-server variant: cloud computing

314

The server is no longer on a company’s network, but
hosted on the Internet, typically by a providing company

Example: cloud services by Google, Amazon, Microsoft

Advantages:
Ø Scalability
Ø Many issues such as security, availability, reliability
are handled centrally
Disadvantages:
Ø Loss of control
Ø Dependency on Internet

Peer-to-peer

315

Similar to client-server style, but each component is both
client and server
Pure peer-to-peer style

Ø No central server, no central router Hybrid peer-to-peer
style
Ø Central server keeps information on peers and responds
to requests for that information

Examples
Ø File sharing applications, e.g., Napster
Ø Communication and collaboration, e.g., Skype

Peer-to-peer: discussion

316

Strengths:
Ø Efficiency: all clients provide resources
Ø Scalability: system capacity grows with number of clients
Ø Robustness

•  Data is replicated over peers
•  No single point of failure (in pure peer-to-peer

style)

Weaknesses:
Ø  Architectural complexity
Ø  Resources are distributed and not always available
Ø  More demanding of peers (compared to client-server)
Ø  New technology not fully understood

80

Call-and-return

317

Components: Objects
Connectors: Messages (routine invocations) Key
aspects
Ø Object preserves integrity of representation
(encapsulation)
Ø Representation is hidden from client objects
Variations
Ø Objects as concurrent tasks

Call-and-return

318

Strengths:
Ø  Change implementation without affecting clients
Ø  Can break problems into interacting agents
Ø  Can distribute across multiple machines or networks

Weaknesses:
Ø  Objects must know their interaction partners; when partner

changes, clients must change
Ø  Side effects: if A uses B and C uses B, then C’s effects on B

can be unexpected to A

Subroutines

319

Similar to hierarchical structuring at the program level

Functional decomposition

Topmost functional abstraction

A

B C D

E1 I1 C2 I2 I

Subroutines

320

Advantages:
Ø Clear, well-understood decomposition
Ø Based on analysis of system’s function
Ø Supports top-down development
Disadvantages:
Ø Tends to focus on just one function
Ø Downplays the role of data
Ø Strict master-slave relationship; subroutine loses
context each time it terminates
Ø Adapted to the design of individual functional pieces,
not entire system

81

Dataflow systems

321

Availability of data controls the computation
The structure is determined by the orderly motion of data
from component to component

Variations:
Ø Control: push versus pull
Ø Degree of concurrency
Ø Topology

Dataflow: batch-sequential

322

Program Program

Component

Frequent architecture in scientific computing and business
data processing

Components are independent programs
Connectors are media, typically files
Each step runs to completion before next step begins

File

Program

Batch-sequential

323

History: mainframes and magnetic tape

Business data processing
Ø Discrete transactions of predetermined type and
occurring at periodic intervals
Ø Creation of periodic reports based on periodic data
updates

Examples
Ø Payroll computations
Ø Tax reports

Dataflow: pipe-and-filter

324

Component: filter
Ø  Reads input stream (or streams)
Ø  Locally transforms data
Ø  Produces output stream (s)

Connector: pipe
Ø  stream, e.g., FIFO buffer

Filter
Filter

Filter
Filter

Filter

Pipe

82

Pipe-and-filter

325

Data processed incrementally as it arrives Output can
begin before input fully consumed

Filters must be independent: no shared state
Filters don’t know upstream or downstream filters

Examples
Ø lex/yacc-based compiler (scan, parse, generate…)
Ø Unix pipes
Ø Image / signal processing

Push pipeline with active source

326

Source of each pipe pushes data downstream
Example with Unix pipes:
grep p1 * | grep p2 | wc | tee my_file

dataSource filter1 filter2 dataSink

write(data)

f1(data)

write(data)

f2(data)

Active
source

Push

Pull pipeline with active sink

327

dataSink filter1 filter2 dataSource

data := next data := next

sink

f1 (data)

data := next

f2 (data) Active

§  Sink of each pipe pulls data from upstream

§  Example: Compiler: t := lexer.next_token

Pull

Combining push and pull

328

Synchronization required:

dataSink filter1 filter2 dataSource

data := read()

f1(data)

data := read()

f2(data)

Push

Pull

write(data)

Active
filter

83

Pipe-and-filter: discussion

329

Strengths:
Ø Reuse: any two filters can be connected if they agree on data
format
Ø Ease of maintenance: filters can be added or replaced
Ø Potential for parallelism: filters implemented as separate
tasks, consuming and producing data incrementally

Weaknesses:
Ø  Sharing global data expensive or limiting
Ø  Scheme is highly dependent on order of filters
Ø  Can be difficult to design incremental filters
Ø  Not appropriate for interactive applications
Ø  Error handling difficult: what if an intermediate filter

crashes?
Ø  Data type must be greatest common denominator, e.g. ASCII

Dataflow: event-based (publish-subscribe)

330

A component may:
Ø Announce events
Ø Register a callback
for events of other
components

Connectors are the
bindings between event
announcements and
routine calls (callbacks)

Routine

Routine

Routine

Routine

Event-based style: properties

331

Publishers of events do not know which components
(subscribers) will be affected by those events
Components cannot make assumptions about ordering of
processing, or what processing will occur as a result of
their events

Examples
Ø Programming environment tool integration
Ø User interfaces (Model-View-Controller)
Ø Syntax-directed editors to support incremental
semantic checking

Event-based style: example

332

Integrating tools in a shared environment

Editor announces it has finished editing a module
Ø Compiler registers for such announcements and
automatically re-compiles module
Ø Editor shows syntax errors reported by compiler
Debugger announces it has reached a breakpoint
Ø Editor registers for such announcements and
automatically scrolls to relevant source line

84

Event-based: discussion

333

Strengths:
Ø Strong support for reuse: plug in new components by registering
it for events
Ø Maintenance: add and replace components with minimum
effect on other components in the system

Weaknesses:
Ø  Loss of control:

§ What components will respond to an event?
§ In which order will components be invoked?
§ Are invoked components finished?

Ø  Correctness hard to ensure: depends on context and
order of invocation

Data-centered (repository)

334

Components
Ø  Central data store component represents state
Ø  Independent components operate on data store

Repository

Knowledge
Source

Knowledge
Source

Knowledge
Source

Computation

Direct
access

Data-Centered: discussion

335

Strengths:
Ø  Efficient way to share large amounts of data
Ø  Data integrity localized to repository module

Weaknesses:
Ø  Subsystems must agree (i.e., compromise) on a

repository data model
Ø  Schema evolution is difficult and expensive
Ø  Distribution can be a problem

Blackboard architecture

336

Interactions among knowledge sources solely through
repository
Knowledge sources make changes to the shared data that
lead incrementally to solution
Control is driven entirely by the state of the blackboard

Example
Ø Repository: modern compilers act on shared data:
symbol table, abstract syntax tree
Ø Blackboard: signal and speech processing

85

Interpreters

337

Architecture is based on a virtual machine produced
in software
Special kind of a layered architecture where a layer
is implemented as a true language interpreter
Components
Ø “Program” being executed and its data
Ø Interpretation engine and its state
Example: Java Virtual Machine
Ø Java code translated to platform independent
bytecode
Ø JVM is platform specific and interprets the
bytecode

Object-oriented

338

Based on analyzing the types of objects in the system and
deriving the architecture from them

Compendium of techniques meant to enhance extendibility
and reusability: contracts, genericity, inheritance,
polymorphism, dynamic binding…

Thanks to broad notion of what an “object” is (e.g. a
command, an event producer, an interpreter…), allows many
of the previously discussed styles

Conclusion: assessing architectures

339

General style can be discussed ahead of time
Know pros and cons
Architectural styles à Patterns à
Components

Architectural Style
n  An architectural style is a description of component types and their

topology.

n  It also includes a description of the pattern of data and control interaction
among the components and an informal description of the benefits and
drawbacks of using that style.

n  Architectural styles define classes of designs along with their associated
known properties.

n  They offer experience-based evidence of how each class has been used
historically, along with qualitative reasoning to explain why each class has
its specific properties. (patterns)

340

86

Architecture Styles
n  Looking for a Uniform Description of an Architecture

q  Which kinds of Components and connectors are used in the style
n  Examples: programs, objects, processes, filters
n  The allowable kinds of components and connectors are primary discriminants among the styles, however the

following four items also contribute to defining the particular style
q  How is control shared, allocated m and transferred among the components

n  Topology : ? Linear (non-branching) , ? A cyclical, ? Hierarchical, ? Star , ? Arbitrary, ? Static or Dynamic
n  Synchronicity: ? Lockstep (sequential or parallel depending on the threads of control) , ? Synchronous, ?

Asynchronous
q  How is data communicated through the system

n  Data Flow Topology as above for control
n  Continuity: Continuous Flow: fresh data available at all times, Sporadic Flow, High-Volume vs Low Volume

(see USB)
q  (? How much network band-with is / can be dedicated to data synchronization)

n  Mode: Describes how data is made available throughout the system
q  Object style: data is passed from component to component
q  Shared data style: data is made available in a place accessible to all

§  Copy out- Copy In mode, vs. broadcast or multicast,

q  How do Data and control interact
n  (data flow & topology vs. control flow & topology)

q  Pipe & Filter (data & control pass together) vs. Client-Server control flows into the servers and data flows in to the clients.

q  What type of reasoning (analysis) is compatible with the style
n  Asynchronously operating components (Non-deterministic) vs. fixed sequence of atomic steps,

341

A View of Architecture Styles
n  Data Flow

q  (1) Batch Sequential (traditional systems) & Pipeline
Systems

q  (2) Pipes & Filters (Linked Stream transformers)
n  Call & return

q  (3) Main Program & Subroutine
q  (4) OO Systems
q  (5) Hierarchical Layers

n  Independent Components
q  (6) Communicating Processes
q  (7) Event Systems

n  Virtual Machines
q  (8) Interpreters
q  (9) Rule-Base systems

n  Data-Centered Systems (Repository)
q  (10) Databases
q  (11) Hypertext Systems
q  (12) Blackboards
q  (13) Distributed Processing Styles
q  (14) Process Control Styl

342

Batch Sequential
n  http://www-2.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/1998/Lectures/06.dataflow/quick_index.html

n  General Constructs:
q  Processing Steps are independent programs
q  Each steps runs to completion before the next program starts
q  Data is transmitted in complete data sets between programs
q  Historically used in Data processing
q  Needs a scheduler to submit the jobs (jcl)

n  Advantages:
q  Allows the designer to understand the system in terms of business process steps.
q  Easy to maintain (supposedly) and add new or replace programs. However experience

has shown that program and data stores are really tied to the business process.
n  Disadvantages:

q  Not good at interactive applications
q  Limited Support for concurrent execution as each program needs ALL the data before it

starts.
q  Need to get ALL the data through the system before we can really see results.
q  Not responsive to changes, No Event Handling, No Fault Tolerance, Many many

problems if tapes are run out of sequence.

Fall 2002

http://www.sei.cmu.edu/about/
disclaimer.html

CS-545-Fall-2002 343

Suggested Batch Sequential Style

344

Program 1
Data
Store

(1)
Program 2 Program (n)

Data
Store

(2)

Scheduler

Components are the Programs and Data stores.
Connectors are one way pipes that transfer bulk data sets.

87

Pipe & Filter (Pipeline)Architecture Styles
n  General Constructs:

q  Pipes move data between filters.
q  The Filters must be independent entities and do NOT share state with other filters.
q  Filters Do NOT know their sources and sinks of data.
q  The correctness of the output of a pipe & filter network should not depend on the order in which the filters preformed

their processing.
q  Examples: Image Processing, Unix pipe shell programs, Compilers

n  Advantages:
q  Allow the designer to to understand the system in terms of composition of filters.
q  Support Re-Use
q  Easy to maintain and add new or replace old filters.
q  Permit specialized analyses: (Throughput & deadlock)
q  Each filter can be implemented as a separate task and executed in parallel with other filters.

n  Disadvantages:
q  Not good at interactive applications, incremental display updates
q  May need to maintain connections between separate yet related streams.

n  Different filters types may therefore require a common representation (packing & unpacking costs)
n  Each event handled from font to back.

345

Program 1 Program 2 Program (n)

One way Data Flow Through a Network of Filters

n  Filters can be interconnected in different ways
q  As long as the input assumptions and output behaviors are the

same, one filter process or a network of filters can be replaced by
a different implementation of a filter process or network that
accomplish the same tasks.
n  The output of a filter process is a function of its input
n  This specification relates the value of messages sent on output

channels to the values of messages received on input channels.
n  The actions a filter takes in response to receiving input must ensure

this relation every time the filter sends output.
n  Requires us to understand and specify our communication and

underlying data assumptions.
n  The output produced by one filter meet the input assumptions of

another.

346

Call & Return Style: Mainframe
n  General Constructs:

q  All intelligence is within the central host computer.
q  Users interact with the host through a terminal that captures

keystrokes and sends that information to the host.
n  Advantages:

q  Mainframe software architectures are not tied to a hardware platform.
q  User interaction performed with workstations.

n  Disadvantages:
q  A limitation of mainframe software architectures is that they do not

easily support graphical user interfaces or access to multiple
databases from geographically dispersed sites.

q  Mainframes have found a use as a server in distributed client/server
architectures

347

UI

Main Frame

Note the connectors may be two-way as contrasted
with the dataflow style as we have control from UI to

Mainframe and Data from the Mainframe to UI

Call & Return Style: File Sharing
n  General Constructs:

q  The original PC networks were based on file sharing architectures,
where the server downloads files from the shared location to the desktop
environment.

q  The requested user job is then run (including logic and data) in the
desktop environment.

n  Advantages:
q  File sharing architectures work if shared usage is low, update contention

is low, and the volume of data to be transferred is low.
n  Disadvantages:

q  In the 1990s, PC LAN (local area network) computing changed because
the capacity of the file sharing was strained as the number of online user
grew (it can only satisfy about 12 users simultaneously) and graphical
user interfaces (GUIs) became popular (making mainframe and terminal
displays appear out of date).

n  Addendum:
q  PCs are now being used in client/server architectures.

348

88

Suggested File Sharing Architecture

349

Application Application (n)
: Buffer Buffer

Buffer

File File (n) Main frame

Buffer

Data
Control

:

:

Data Abstraction & OO Architecture
n  General Constructs:

q  Data representations and their associated operations encapsulated in an abstract data
type.

q  The components are the objects and connectors operate through procedure calls
(methods).

q  Objects maintain the integrity of a resource and the representation is hidden from
others.

n  Advantages:
q  Server is able to change an implementation without affecting the client.
q  Grouping of methods with objects allows for more modular design and therefore

decomposes the problems into a series of collections of interacting agents.

n  Disadvantages:
q  For one object to interact with another, the client object must know how to interact with

the server object and therefore must know the identity of the server.
q  If the server changes its interface ALL interacting clients must also change.

n  Services declared as PUBLIC and IMPORTED into the CLIENT
q  Also need to consider side affects, A uses B , B uses C and we mod C

350

Hierarchical Layered Architecture Styles
n  Layered Systems

q  General Constructs
n  A layered system is organized hierarchically with each

layer providing service to the layer above it and serving
as a client to the layer below.

n  In some systems inner layers are hidden from all
except the adjacent outer layer.

n  Connectors are defined by the protocols that determine
how layers will interact.

n  Constraints include limiting interactions to adjacent
layers. The best known example of this style appears
in layered communication protocols OSI-ISO (Open
Systems Interconnection - International Standards
Organization) communication system.

n  Lower levels describe hardware connections and
higher levels describe application.

351

GUI
Application Layer

DBMS
OS Layer

Hierarchical Layered Architecture Styles
n  Issues:

q  No one agrees exactly on what a 'layer' is.
n  For example, some layering schemes have very little relationship to

the runtime.
n  Others confuse layers with a 'tiered' runtime architecture where the

various layers are not only split by build-time packaging, but by
running in different processes and possibly different nodes at run
time.

n  Clearly separate the idea of 'tiers' from ‘layers'.
q  A tier is a structure for runtime component interaction that

implies nothing about the construction of the build time.
n  For example, a 3 tier system may be composed of a web browser,

web server/asp pages, and database.
n  Note that each tier runs in a different process and possibly many

different system nodes.

352

89

Hierarchical Layered Architecture Styles
n  Layers is a pattern for 'application

architectures'.
q  Layers are normally thought of as a build-time

structuring technique for building an application or
service that will execute in a single process.

n  There are many variations on the layers pattern.
q  Four-layer architecture (analysis)
q  Layered and sectioned architecture

n  (http://c2.com/ppr/envy/#well_encapsulated_code)

q  Layered architecture
q  Layers (from POSA1)
q  Patterns for generating a layered architecture
q  Relational database access layer

n  (
http://www.objectarchitects.de/ObjectArchitects/orpatterns/index.htm?Performance/
performance.htm)

n  Secure access layer (analysis)
353

GUI
Application Layer

DBMS
OS Layer

Hierarchical Layered Architecture Styles
n  Layered Systems

q  Advantages:
n  Layered systems support designs based on increasing levels of

abstraction.
n  Complex problems may be partitioned into a series of steps.
n  Enhancement is supported through limiting the number of other

layers with which communication occurs.

q  Disadvantages:
n  Disadvantages include the difficulty in structuring some systems into

a layers.
n  Performance considerations may not be well served by layered

systems especially when high level functions require close coupling
to low level implementations.

n  It may be difficult to find the right level of abstraction especially if
existing systems cross several layers.

354

Communicating Processes
n  Each component has it's own thread of execution.
n  The Provider/Observer Role Pattern
n  Push and Pull Interaction Patterns
n  Opaque Interaction Patterns

q  Synchronous Opaque Interaction Patterns
q  Asynchronous Opaque Interaction Patterns

n  Monitorable Interaction Patterns
q  Pull-Monitorable Interaction Patterns
q  Push-Monitorable Interaction Patterns

n  Abortable Interaction Patterns
q  Abortable Async Opaque Interaction Patterns
q  Abortable Pull-Monitorable Interaction Patterns
q  Abortable Push-Monitorable Interactions Patterns

n  Handshaking Patterns
n  Combining Patterns

355

Object 1
Object 2

The components are the objects
and connectors operate through
message passing.
Components are often in
separate process spaces

Independent ComEvent Based Architecture Styles

n  Event-Based Implicit Invocation (Look at Jini)
q  General Constructs:

n  A component announces (broadcasts) one or more events.
n  System Components register interest in an event by associating a procedure with it.
n  The system invokes all events which have registered with it.
n  Event announcement ``implicitly'' causes the invocation of procedures in other

models.
n  This style originates in constraint satisfaction (Planning), daemons, and packet-

switched networks.
q  Used in Planning Domains

n  Architectural components are modules whose interface provides both a collection of
procedures and a set of events.

n  Procedures may be called normally or be registered with events in the system.
n  Implicit invocation systems are used in:

q  programming environments to integrate tools
q  database management systems to ensure consistency constraints
q  user interfaces to separate data from representation

356

90

Event Based Architecture Styles
n  Event-Based Implicit Invocation

q  Advantages:
–  Allows any component to register for events
–  Eases system evolution by allowing components to be replaced without

affecting the interfaces of other components in the system.

q  Disadvantages:
–  Components relinquish control over the computation performed by the

system.
–  A component cannot assume that other components will respond to its

requests
–  A component does not know in which order events will be processed.
–  In systems with a shared repository of data the performance and accuracy of

the resource manager can become critical.
–  Reasoning about correctness can be difficult because the meaning of a

procedure that announces events will depend on the context in which it was
invoked.

357

Event Based Architecture Styles
n  The first paper predates (1996) the JINI

Architecture (1999) and proposes three services
q  Event Specification (by services)

n  Event Classification
q  Event Registration (by clients at Services)

n  Event Templates
n  Event Binding to identify UNIQUE service “that

printer” ,not “this printer”
n  Event Timestamps

q  Event Notification (by network)

358

Lookup
Service

(1)

Lookup
Service

(n)

Service
Provider

Client
(n)

Event
Registration

Event
Notification

Service
Registration

Communication with Service

Interpreter Architecture Styles
n  Interpreters

q  Interpreters create a virtual machine in software. There are generally
four components to an interpreter,
n  the program being interpreted,
n  the state of the program,
n  the state of the interpreter,
n  and the interpreter itself.

q  This style is used to narrow the gap between the computing engine in
hardware and the semantics of a program.

q  Programming languages that provide a virtual language machine
include:
n  Pascal, Java, BASIC.

359

Rule Based Style

360

The Example in the book shows how the Architecture Elements For a Rule-based
Systems are realized using a number of Architecture Types.

Select and and Execute
Rules based on the
Current State
and Derived Facts

Working
Memory Rule

base
Fact

memory

Knowledge base

Rule
Interpreter

Rule &
Data Element
Selection

Selected Rule
Selected Data

Inputs

Outputs

New Facts
New Active Rules

Trigger Data

Data &
Updates

Active Rules
& Facts

What are the different
considerations for a local vs
distributed homogeneous vs
distributed heterogeneous
system ?

91

Rule-Based Style

361

Working
Memory Rule

base
Fact

memory

Knowledge base

Rule
Interpreter

Rule &
Data Element
Selection

Selected Rule
Selected Data

Inputs

Outputs

New Facts
New Active Rules

Trigger Data

Data &
Updates

Active Rules
& Facts

Working
Memory Rule

base
Fact

memory

Knowledge base

Rule
Interpreter

Rule &
Data Element
Selection

Selected Rule
Selected Data

Inputs

Outputs

New Facts
New Active Rules

Trigger Data

Data &
Updates

Active Rules
& Facts

Execution
Stack

Control
Procedures

Interpreter

Scheduler

Selected
Actions

Next Action

Unfinished Action

Outputs

Incomplete
Procedures

Inactive
Rules

Active
Rules

Inactive
Facts

Active
Facts

Why the Distinction
Between
Inactive & Active?
What Architectural
Style would we
have if this data was
maintained remotely?

Rule &
Fact
Compiler

Active Rules & Facts

Data Flow Network
for Partially
Evaluated Rule Sets

Rule &
Fact
Compiler

Meta Control Rules

Agenda Prioritized
Activations

Candidate
Rule/Data
Activations

Matching
Rule/Data
Pairs

Regardless of whether or
not you are actually
building a rule based system
You can use this
general approach to build
A scheduler to identify the
Tasks required to be scheduled
When investigating Aberrant
or interesting conditions
in the environment Delete

Completed
Activations

Activation/
Deactivation

Trigger
Data

Data Repository Architecture Styles

n  Repositories
q  General Constructs:

n  Repository style systems have two distinct components:
q  A central data structure which represents the current state, and
q  A collection of independent components which operate on the data-store.

n  Two methods of control exist for these systems.
q  If input transactions select the processes to execute then a

traditional database can be used as a repository. (Client-Server)
q  If the state of the data-store is the main trigger for selecting processes then

the repository can be a blackboard.

362

Client-Server: Continued
n  Client/server architecture.

q  C/S architecture emerged due to file sharing
architectures limitations
n  This approach introduced a database server to replace the

file server.
n  Using a relational database management system (DBMS),

user queries could be answered directly.
n  The C/S architecture reduced network traffic by providing a

query response rather than total file transfer.
n  C/S improves multi-user updating through a GUI front end to

a shared database.
n  C/S architectures, use (RPCs) or standard query language

(SQL) statements to communicate between the client and
server.

363

Repository: Client-Server Cont.
n  The term client/server was first used in the 1980s in

reference to personal computers (PCs) on a network.
n  The client/server model started gaining acceptance in

the late 1980s.
n  The client/server software architecture is a versatile,

message-based and modular infrastructure that is
intended to improve usability, flexibility, interoperability,
and scalability as compared to centralized, mainframe,
time sharing computing

n  A client is defined as a requester of services and a
server is defined as the provider of services.

n  A single machine can be both a client and a server
depending on the software configuration.

364

92

Client Server Architecture Types
n  Two Tiered

q  Three components distributed in two tiers:
n  User System Interface
n  Processing Management process development, process

enactment, process monitoring, and process resource
services)

n  Database Management (such as data and file services)

n  Three Tiered
q  Three tier with transaction processing monitor

technology
q  Three tier with message server.
q  Three tier with an application server.
q  Three tier with an ORB architecture.
q  Distributed/collaborative enterprise architecture.

365

Two Tiered Client-Server Architectures
n  General

q  The user system interface is usually located in the user's desktop environment
in two tier client/server architectures.

q  The database management services are usually in a server that is a more
powerful machine that services many clients.

q  Processing management is split between the user system interface
environment and the database management server environment.

q  The database management server provides stored procedures and triggers.
q  Software vendors provide tools to simplify development of applications for the

two tier client/server architecture.

366

GUI

DBMS
Engine

Data
Store

Two Tiered Client-Server Architectures
n  Advantages:

q  Good solution for distributed computing when work groups are defined as a
dozen to 100 people interacting on a LAN simultaneously.

n  Disadvantages:
q  Server performance deteriorates as number of clients increases as a result of

maintaining a connection with each client
n  (even when no work is being done)

q  Vendor proprietary database implementations restricts flexibility and choice of

DBMS for applications.

q  Current implementations provide limited flexibility in repartitioning program
functionality from one server to another without manually regenerating
procedural code.

367

Two Tiered VS Three Tiered C/S

368

Fat
Clients

DBMS
Engine

Data
Store

Thin
Clients

DBMS
Engine

Data
Store

Middle
Tier

93

Three Tiered Client-Server Architectures
n  Proposed to overcome two tier architecture limitations
n  A middle tier added between the UI client environment and the DBMS.

q  There are a variety of ways of implementing this middle tier, such as
transaction processing monitors, message servers, or application servers.

q  Middle tier performs queuing, application execution, and DB staging.
n  For example, if the middle tier provides queuing, the client can deliver its request to

the middle layer and disengage because the middle tier will access the data and
return the answer to the client.

q  Middle layer adds scheduling and prioritization for work in progress.
q  The three tier client/server architecture improves performance for groups with a

large number of users (in the thousands) and improves flexibility when
compared to the two tier approach.

q  Flexibility in partitioning can be a simple as "dragging and dropping" application
code modules onto different computers in some three tier architectures.

n  Difficult Development environments

369

Hypertext Style

n  Three hypertext architectures variants:
q  Linear, hierarchical, and relational/hierarchical

n  Reference Models
q  The HAM or Hypertext Abstract Machine, as described by Campbell and

Goodman.
q  The Trellis model, a reference model by Stotts and Furuta.
q  The Dexter model, a reference model by Halasz and Schwartz, written in

the specification language Z.
q  The Formal Model by B. Lange, a reference model written in the

specification language VDM.
q  The Tower Model, a more general object-oriented model by De Bra,

Houben and Kornatzky.

370

HAM Reference Model : Hypertext Style
n  HAM is a transaction-based server for a hypertext storage system.
n  The server is designed to handle multiple users in a networked environment.
n  The storage system consists of a collection of contexts, nodes, links, and

attributes that make up a hypertext graph.”
n  HAM sits in between the file system and the user interface. Campbell and

Goodman envisioned the graphical representation given below:
n  HAM is a lower level machine, tied closely to the storage (file) system, while

having a looser connection to the applications and user interfaces.
n  HAM is only part of this architecture and not the whole system.

371

User
Interface

Application Tools

Hypertext Abstract Model (HAM)

Host File System

Trellis Reference Model : Hypertext Style
n  Richard Furuta and P. David Stotts developed a hypertext system, based

on Petri Nets, called the Trellis System.
q  From the Trellis model they deduced a meta-model, which they called the

Trellis hypertext reference model, abbreviated as r-model.
q  The r-model is separated into five logical levels, as shown in the figure below.

Within each level one finds one or more representations of part or all of the
hypertext.

q  In contrast to the HAM (and the other reference models) the levels represent
levels of abstraction, not components of the system.

q  The levels may be grouped into three categories: abstract, concrete and
visible.

372

Abstract Component Level
Abstract Hypertext Level
Concrete Context Level

Concrete Hypertext Level
Visible Hypertext Level

94

Dexter Reference Model : Hypertext Style
n  The goal of the model is to provide a principled basis for comparing systems as well

as for developing interchange and interoperability standards.
n  The focus of the Dexter model is on the storage layer, which models the basic

node/link network structure that is the essence of hypertext.
n  The storage layer describes a "database" that is composed of a hierarchy of data-

containing "components" (normally called "nodes") which are interconnected by
relational "links".

n  The storage layer focuses on the mechanisms by which the components and links
are "glued together" to form hypertext networks.

n  The components are treated in this layer as generic containers of data.
n  The model is divided in three layers, with glue in between, as shown in the figure

below:

373

Runtime layer
Storage layer

Within Component layer

A Formal Model of Hypertext
n  The main motivation for the definition of this formal model is the lack of

means to interchange and communicate between existing hypertext
systems.

n  Hypertext research is driven mostly by user interface and implementation
considerations.

n  Very few attempts have been made to provide a formal basis for the
research field.

n  David Lange chose the Vienna Development Method (VDM)
[BJ82,Jones-86] because it supports the top-down development of software
systems specified in a notion suitable for formal verification.

n  Like the Dexter model Lange's model emphasizes the data structure of
hyper-documents. Therefore Lange calls it a data-model of hypertext.

n  This data-model defines nodes, links, network structures, etc.
n  The model goes further than the Dexter model in looking inside the nodes of

a hyper-document to find slots,buttons and fields.
n  The basic data-model is then extended with features to become an object-

oriented model for hypertext.

374

Tower Reference Model: Hypertext Style
n  Background:

q  Trellis model describes the "abstract component level" in a way that makes it sound like there would be no
need for containers containing containers (or in more common terminology: composites containing
composites).

q  The Dexter model allows undirected (and bidirectional) links, but only between two nodes (called
components).
n  Links between more than two nodes are allowed but must be directed (they must have at least one "destination"

or "TO" endpoint).
n  Another restriction in the Dexter model is that, while the model allows composites within composites, the

hierarchy of composites must be acyclic, thus forbidding so called "Escher effects".

n  The Tower model contains basic structural elements, nodes, links and
anchors, tower objects and city objects.
q  The tower objects are used to model different descriptions of an object, somewhat

like the layers in the Dexter model.
q  Type, storage structure, presentation, etc. are all levels of the tower object.
q  Cities represent sets of views onto (tower) objects.
q  The model allows every kind of object to be a virtual object (i.e. the result of a

function or algorithm).
n  Operators for defining virtual structures are Apply-to-All, Filter, Enumeration and

Abstraction (or grouping).

Blackboard Style

n  http://www.cs.virginia.edu/~acc2a/techie/notes/blkbrds.htm

n  BB Metaphor:
q  A group of specialists work cooperatively to solve

a problem, using a blackboard as the workplace
for developing the solution.

q  The problem and initial data are written on the
blackboard.

q  The specialists watch the blackboard, and when a
specialist finds sufficient information on the board
to make a contribution, he records his contribution
on the blackboard.

376

95

BB Architecture Overview

377

Blackboard
Layers

Control
Data

Controller

KS

KS

KS

KS

KS

KS consist of a
Condition (Trigger)
Section and the Body

Essentially what happens is:

An event has occurred that
has resulted in the BB state
changing.
If am registered to Accept
events on that level of the BB
and if the event satisfies my
curiosity and any constraints
(Trigger conditions), then
I will apply the KS body
to evaluate the Event and
perform the requested operation

Repository Architecture Styles: Blackboard

n  A blackboard model usually has three components:
q  General Constructs

n  The knowledge source: independent pieces of application specific knowledge. Interaction between
knowledge sources takes place only through the blackboard.

n  The blackboard data structure: state data, organized into an application-dependent hierarchy.
Knowledge sources make changes to the blackboard that lead incrementally to a solution to the
problem.

n  Control: driven by the state of the blackboard. Knowledge sources respond opportunistically when
changes in the blackboard make them applicable.

q  General Operation
n  Invocation of a knowledge source is dependent upon the state of the blackboard.
n  Control can be implemented in the knowledge source, the blackboard, externally, or a combination of

these.
n  Blackboard systems have traditionally been used for applications requiring requiring complex

interpretations of signal processing.
n  Programming environments can be considered as having a shared repository of programs and program

fragments.

378

Repository Architecture Styles: Blackboard
n  Independence of Expertise

q  Each knowledge source is a specialist at solving certain aspects of the problem.
q  No KS requires other KSs in making its contribution.
q  Once it finds the information it needs on the blackboard, it can proceed without any assistance from

other KSs.
q  KSs can be added, removed, and changed without affecting other KSs.

n  Diversity in Problem Solving Techniques
q  Internal KS representation and inference machinery is hidden from view.

n  Flexible Representation of Blackboard Information
q  The blackboard model does not place any prior restrictions on what information can be placed on

the blackboard.
q  One blackboard application might require consistency, another might allow incompatible

alternatives.
n  Common Interaction Language

q  There must be a common understanding of the representation of the information on the blackboard,
understood by all KSs.

q  There's a tradeoff between representational expressiveness of a specialized representation shared
by only a few KSs and a representation understood by all.

379

Repository Architecture Styles: Blackboard

n  Positioning Metrics
q  When the blackboard gets full, we must still have a way for the KSs to

immediately see the information important to them.
q  Often we have multiple or subdivided blackboards, or information is

sorted alphabetically or by reference.
q  Efficient retrieval is also important.

n  Event Based Activation
q  KSs are triggered in response to events (they don't actively watch the

blackboard).
q  The board knows what kind of event each KS is looking for, and

considers it for activation whenever that kind of event occurs.
n  Need for Control

q  A control component separate from the individual KSs is responsible for
managing the course of problem solving.

q  The control component doesn't share the specialties of the KS's, but
looks at each KSs evaluation of its own contribution to decide which one
gets to go.

380

96

Repository Architecture Styles: Blackboard

n  The Blackboard Model of Problem Solving
q  Incremental Solution Generation

n  Blackboard systems are effective when there are many steps towards the solution
and many potential paths involving these steps.

n  It works opportunistically, exploring the paths most effective in solving the particular
problem and can outperform a solver that uses a predetermined approach

q  Knowledge Sources
n  Each KS is separate and independent of all other KSs.
n  Each KS does not need to know of their expertise or even existence.
n  KSs must understand the state of the problem-solving process and the

representation of relevant information on the blackboard.
n  Each KS knows its triggering conditions -- the conditions under which it can

contribute.
n  KSs are not active, but KS activations -- combinations of KS knowledge and a

specific triggering condition -- are the active entities competing for executing
instances. KSs are static repositories of knowledge.

n  Ks activations are the active processes.

381

Repository Architecture Styles: Blackboard

n  The Blackboard
q  The blackboard is a global structure available to all KSs.
q  It is a community memory of raw input data, partial solutions,

alternatives, final solutions, and control information. It is a
communication medium and buffer.

q  It is a KS trigger mechanism.

n  Control Component
q  An explicit control mechanism directs the problem solving process

by allowing KSs to respond opportunistically to changes on the
blackboard.

q  On the basis of the state of the blackboard and the set of triggered
KSs, the control mechanism chooses a course of action.

q  At each step to the solution, the system can execute any triggered
KS, or choose a different focus of attention, on the basis of the
state of the solution.

382

Uses of the Blackboard Style
n  It has been used for

q  sensory interpretation,
q  design and layout,
q  process control,
q  planning and scheduling,
q  computer vision,
q  case based reasoning,
q  knowledge based simulation,
q  knowledge based instruction,
q  command and control,
q  symbolic learning, and
q  data fusion..

383

Why Use the Blackboard Problem Solving
Approach

– When many diverse, specialized
knowledge representations are needed.

– When an integration framework for
heterogeneous problem solving
representations and expertise is needed

– When the development of an application
involves numerous developers.

– When uncertain knowledge or limited data
inhibits absolute determination of a
solution, the incremental approach of the
blackboard system will still allow progress
to be made.

– When multilevel reasoning or flexible,
dynamic control of problem-solving
activities is required in an application.

Repository Architecture Styles: Blackboard

n  Advantages:
q  Provides an explicit forum for the discussion of data access,

distribution, synchronization
q  Provides an explicit forum for the discussion of Task Allocation Policies
q  Provides an explicit for the discussion of control and task sequencing

and prioritization
q  Provides an explicit forum for the discussion of Load Redistribution.

n  Disadvantages:
q  Blackboard systems to not seem to scale down to simple problems, but are only

worth using for complex applications

384

97

Repository Architecture Styles: Blackboard

n  Conclusion:
q  I have found architecture style to be able to subsume the styles

others to a great extent.
n  Even for Real-Time Video processing !!

q  I usually start with this view and then relax the architecture to
accommodate the functional and performance requirements with
attributes of the other styles

385

A View of Distributed Architecture Styles

386

Distributed Processing is classified into nine styles
from the viewpoint of the location of data and the
processing type between client and server.
 Data is classified as Centralized or Distributed
 Processing as either synchronous or asynchronous

Transaction Type
Atomic, Consistency, Isolation, Durability

Query Type
A reply from the server is synchronized with a request from the client

For Asynchronous processing:
A Notification type indicates that the server process is not synchronized with a
client request

A View of Distributed Architecture Styles Cont:

n  Transaction Types
•  Centralized: Single DB, Single Server
•  Distributed: Multiple DBs on Multiple Servers with Synchronous processing

between Servers.
•  Asynchronous: Multiple DB on Multiple Servers with Asynchronous processing

between Servers.
n  Query Types

•  Centralized: Query and Reply Processing
•  Distributed: Simultaneous access to to multiple data bases and support query

intensive immediate processing
•  Asynchronous: Suited to asynchronous sharing of data (partial DB downloads)

n  Notification Types
q  Centralized: Automation of simple workflow, shipping memos, etc.
q  Distributed: Distributed transaction and data processing from mobile clients
q  Asynchronous: Supports loose integration of independent multiple applications

or systems.

387

Process Interaction in Distributed Programs Cont.

n  Asynchronous Message Passing
q  Channel has unlimited capacity
q  Send & receive do not block
q  Different communication channels are used for different kinds of messages.

n  Synchronous Message Passing
q  Channel has fixed capacity
q  Sending process waits for receiving process ready to receive, hence

synchronized
n  Buffered Message Passing

q  Channel has fixed capacity
q  Send is delayed only when the channel is full

n  Generative Communication
q  Send & Receive processes share a single communication channel called

tuple space.
q  Associative naming distinguishes message types in the tuple space

n  Remote Procedure Call & Rendezvous
q  Calling process delays until the request is serviced and results returned.

388

98

PIPD: Requests & Replies between clients & Servers

q  Server vs. monitors
n  A server is active, whereas a monitor is passive
n  Clients communicate with a server by sending and

receiving messages,
whereas clients call monitor procedures.

q  A monitor is a synchronization mechanism that
encapsulates permanent variables that record the
state of some resource and exports a set of
procedures that are called to access the resource.
n  The procedures execute with mutual exclusion; they use

condition variables for internal synchronization.

389

A View of Distributed Processing Styles
Cont.

390

Centralized

Distributed

Synchronous Asynchronous

Synchronous Processing Transaction Type
(ACID)

Centralized Transactions Distributed
Transactions

Asynchronous
Transactions

Query Type Centralized
Query

Distributed Query Asynchronous Query

Asynchronous Processing Notification Type Centralized Notification Distributed
Notification

Asynchronous Notification

Processing Types
between C/S

Location of Data
Msg. Type

Processing Type
Between Servers

Architectural Styles for Transaction Types
 Centralized vs. Distributed vs. Asynchronous Transaction Messages

Architectural Styles for Query Types
 Centralized vs. Distributed vs. Asynchronous Query Messages

Architectural Styles for Notification Types
Centralized vs. Distributed vs. Asynchronous Notification Messages

Process Interaction in Distributed Programs (PIDP)

n  Cooperating Message Passing Processes:
q  One way Data Flow Through a Network of Filters
q  Request & Replies between clients & servers
q  Heartbeat Interaction between neighboring processes
q  Probes & Echoes in Graphs
q  Broadcasts between processes in complete graphs
q  Token passing along edges in a graph
q  Coordination between centralized server processes
q  Replicated workers sharing a bag of tasks

391

Distributed Processes Architecture Styles
n  Other familiar architectures

q  Distributed processes –
n  have developed a number of common organizations for multi-process

systems.
n  Some are defined by their topology (e.g. ring, star)
n  Others are characterized in terms of the kind of inter-process protocols that

are used (e.g. heartbeat algorithms).
n  A common form of distributed system architecture is client-server.

q  A server provides services to the clients.
q  The server does not usually know the number or identity of the clients which will

access it.
q  The clients know the identity of the server (or can find it out through another name-

server) and access it through a remote procedure call.

q  Main program/subroutine organizations: The primary organization of
many systems mirrors the programming language in which the system is
written.

q  Domain Specific Software Architectures (DSSA)
q  State-transition systems: A common organization for many reactive

systems. Define in terms of a set of states and a set of named transitions

392

99

Process Control Architecture Styles
n  Process Control

q  Process Control Paradigms
n  Usually associated with real-time control of physical processes. The system

maintains specified properties of the output process near a reference value
q  Open Loop Systems: If the process is completely defined, repeatable, and

the process runs without surveillance
§  Space Heater

q  Closed Loop Systems: Output is used to control the inputs to maintain a
monitored value
§  Speed Control, etc. Feed back and Feed Forward controller.

q  General Constructs:
n  Computational Elements
n  Data Elements
n  Control Loop Paradigm

q  Concerns
n  We need to worry about the physical control laws (s-domain) versus the time

sampled control laws (Z-Domain) and the introduction of poles and zeroes
into the transfer function.

393

Heterogeneous Architecture Styles

n  Heterogeneous Architectures
q  Most systems involve the combination of several styles.
q  Components of a hierarchical system may have an internal

structure developed using a different method.
q  Connectors may also be decomposed into other systems (e.g.

pipes can be implemented internally as FIFO queues).
q  A single component may also use a mixture of architectural

connectors.
n  An example of this is Unix pipes-and-filter system in which the file

system acts as the repository, receives control through initialization
switches, and interacts with other components through pipes.

394

Topic 7: Architectural
Patterns

Pattern-Oriented Software
Architecture
n  Frank Buschmann, Regine Muenier, Hans Rohnert,

Peter Sommerlad, Michael Stal.1996.Patterns of
Software Architecture

n  Presented three categories of patterns
q  Architectural Patterns
q  Design Patterns
q  Idoms

n  Have been confused with Architectural Styles
q  To see difference we need to look at origins of Software

Patterns

396

100

Origins of Patterns

n  There are a number of primary sources for the
emergence of Software Patterns
q  PhD work on frameworks by Eric Gamma
q  Contract specification by Richard Helm
q  Smalltalk frameworks by Brian Foote and Ralph Johnson
q  Software Architecture handbook by Bruce Anderson

n  But the patterns form originates in the built
environment with the work of Christopher Alexander

397

A Brief History of Software Patterns

n  1989: Alexander’s ideas introduced by Kent
Beck, Ward Cunningham

n  1991-4: OOPSLA workshops on Software
Architecture
q  Gamma, Helm, Johnson and Vlissides meet

n  1993: Hillside group formed
n  1995: Design Patterns book published
n  1996: Alexander’s keynote at OOPSLA

398

Christopher Alexander

n  Born in Vienna, educated in Britain and the US
n  A leader of “post-modern” architecture

q  Driven by observation that most of what humanity has built
since WWII has been dehumanising rubbish

q  Believes architecture impacts directly on our behaviour and
well being
n  “Tall buildings make people mad”

q  Professional architects have failed humanity and the
environment

n  Views are controversial even amongst architects

399

Christopher Alexander (2)
n  Work is represented in an 11-volume series of

books (8 currently in print)
q  The Timeless Way of Building
q  A Pattern Language
q  The Oregon Experiment
q  The Linz Café
q  The Production of Houses
q  A New Theory of Urban Design
q  A Foreshadowing of 21st Century Art
q  The Mary Rose Museum
q  The Nature of Order
q  Sketches of a New Architecture
q  Battle: The story of a Historic Clash Between World

System A and World system B

400

101

Christopher Alexander (3)

n  Also presented a critique of modern design in
Notes on the Synthesis of Form (1964)
q  Identified cognitive complexity and the alienation

of builders from users as the root of failure of
modern design

q  Later proposed “pattern languages” as a way of
recovering lost ability to design useful things

401

Homeostatic Structure
n  Alexander’s criticism of modern design is rooted in the

belief that we have lost the ability to create ‘homeostatic
(self-adjusting) structures’

n  In homeostatic structure the failures of form are ‘one-offs’
n  The culture/tradition that supports them changes more

slowly
q  Strongly resists all changes other than those provoked

by failure
q  Is embodied in a culturally acquired “pattern

language”
n  Each failure is easily accommodated, equilibrium

between form and context is dynamically re-established
after each ‘failure’

402

Biological Forms

n  An individual tree is an homeostatic structure
n  It responds, genetically, to the local availability of

sunlight and rain
q  Through numbers of leaves, branches

n  To competition
q  Through achieving maximum height

n  To wind
q  By bending its shape

n  Each individual tree’s shape fits its individual context

403

Reasons for Modern Design Crisis

n  Design tradition has been decisively weakened
q  In face of new requirements, new materials

n  Feedback loop no longer immediate
q  Professionalisation of architecture separates designers

from users
n  The rising control of the designer

q  Has an unachievable responsibility
q  Cognitive burden too large

404

102

A Pattern Language

n  Alexander’s book: “A Pattern Language” presents
253 patterns for the built environment
q  Written in a standard, narrative form supported by hand-

drawn sketches
q  Includes patterns to build alcoves, rooms, houses, towns,

cities and even global society
n  Together the patterns form a network

q  A “pattern language”

405

Example of an Alexandrian pattern

n  “Waist High Shelf”
q  Proposes that every domestic home needs a “waist-

high shelf”
q  A convenient place to deposit office keys, car keys,

mobile phone etc.
n  Everything you don’t need at home, but do need for

work
n  Can be implemented in a number of ways

q  Shelf; kitchen worktop; particular stair on stairway
q  Is an abstract solution to a general, recurring problem

in a particular context

406

Design Patterns

n  Design Patterns are elements of reusable
software

n  They provide the abstract core of
solutions to problems that are seen over
and over again

407

Example of a Design Pattern
(Simplified)
n  Example Design Pattern: State
n  Use when

q  Behaviour depends on current state or mode
q  When otherwise a large switch statement or long if

statement would need to be used
n  These are difficult to maintain

n  Solution
q  Abstract state-specific behaviour into a shallow inheritance

hierarchy; instantiate the appropriate state object as
needed at run-time

408

103

State Pattern Applied

409

CopyOfBook

IsbnNumber:BookCode
currentState:LoanStatus

checkOut()
return()

LoanStatus
{abstract}

checkOut()
return()

Available OnLoan

CopyOfBook “holds” an instance of EITHER
Available or OnLoan at run-time (as
appropriate) and passes on to it the

messages it receives. Available and OnLoan
have different implementations of checkOut()

The “Gamma Patterns”

n  The patterns in the Design Patterns book are
sometimes called “Gamma patterns”
q  After the lead author, Erich Gamma

n  Also called GoF or Gang-of-Four patterns
n  They are a catalogue of 23 patterns

q  NOT a pattern language
q  Each pattern is written in a standard template form
q  Classified into Structural, Behavioural and Creational

patterns
q  Links shown via a Pattern Map

410

The Gamma Pattern Template
n  Intent
n  A.K.A.
n  Motivation
n  Applicability
n  Structure
n  Participants
n  Collaborations
n  Consequences
n  Implementation
n  Sample Code
n  Known Uses
n  Related Patterns

411

Map of the Gamma Patterns

412

Builder

Memento Proxy

BridgeIterator

Decorator

Flyweight
Visitor

Chain of Responsibility

State Mediator

Prototype

creating
composites enumerating

children

avoiding
hysterisis

Command

composed using

adding
operations

Composite

sharing
composites

adding responsibilities
 to objects

changing
skin versus
guts

sharing
strategies

sharing
states

sharing
terminal
symbols

Interpreter
adding operations

defining
the
chain

defining traversals

complex
dependency
management

defining
algorithm抯
steps

Strategy

Template Method often uses

Factory Method

implement using

configure factory
dynamically

single instance

Singleton

Facade

single instance

Abstract Factory

Creational Patterns

Behavioural Patterns

Structural Patterns

Adapter

Observer

104

Shared Values of People Documenting
Software Patterns
n  Success is more important than novelty

q  good patterns are discovered not invented
n  Emphasis on writing down and communicating “best

practice” in a clear way
q  most patterns use a standard format - a patterns template

which combines literary and technical qualities
n  “Qualitative validation of knowledge”

q  effort is to describe concrete solutions to real problems, not
to theorise

413

Shared Values of People Documenting
Patterns (contin.)
n  Good patterns arise from practical experience

q  Every experienced developer has patterns that we would
like them to share. We do this in Pattern Writers’
workshops

n  Respect and recognition for the human dimension of
software development
q  Full recognition that design is a creative, human activity
q  Full respect for previous gains and conquests

414

Characteristics of Software Design
Patterns (e.g. Gamma et al)*
n  Problem, not solution-centred
n  Focus on “non-functional” aspects
n  Discovered, not invented
n  Complement, do not replace existing techniques
n  Proven record in capturing, communicating “best

practice” design expertise
*Gamma E., Helm R., Johnson R., Vlissides J. 1994.Design Patterns-

Elements of Reusable Object-Oriented Software. Addison-Wesley

415

Architectural Patterns

n  “An architectural pattern expresses a
fundamental organising structural
organisation schema for software systems. It
provides a set of predefined subsystems,
specifies their responsibilities, and includes
rules and guidelines for organising the
relationships between them”

416

105

Architectural Patterns

n  Buschmann et al., present a catalogue that includes
8 architectural patterns in 4 categories
q  “From Mud to Structure”

n  Layers, Pipes and Filters, Blackboard
q  Distributed Systems

n  Broker
q  Interactive Systems

n  Model View Controller, Presentation-Abstraction-Controller
q  Adaptable Systems

n  Microkernel, Reflection

417

The Model-View-Controller Pattern
(continued)

418

Model
View

Controller

• M-V-C originated with Smalltalk-80
 - Informs the entire architecture of modern Smalltalk
 environments

• Microsoft’s Document-View architecture is an instance of M-V-C
• Model = Document, View = View
 -So where is the Controller? (answer: it is MS Windows!)

Layers Pattern: Example

419

FTP FTP

TC P TC P

I P I P

Ethernet Ethernet

FTP protocol

TCP protocol

IP protocol

Ethernet protocol

Physical connection

TCP/IP protocol

Layers Pattern

n  Context
q  large system needing decomposition

n  Problem
q  How to structure systems that contain a mix of

high and low-level functionality
n  Solution

q  Conceptually layer the system, from level 0
upwards

420

106

Layers Pattern: Structure

421

Class

Responsibility Collaborator

LayerJ

Provides services to
Layer J+1

Delegates subtasks
to Layer J-1

Layer J-1

Layers Pattern: Consequences

n  Benefits
q  Reuse of Layers
q  Support for standardisation
q  Localisation of dependencies
q  Exchangeability

n  Liabilities
q  Cascades of Changing Behaviour
q  Lower Efficiency
q  Unnecessary work
q  Difficulty of getting ‘granularity’ right

422

Layers Pattern: Variants

n  Relaxed Layer System
q  A.k.a. ‘open’ layered system
q  Layer can talk to any layer below it

q  In ‘closed’ layer systems can talk only to the layer
immediately below

q  Gains in performance, flexibility
n  Loses maintainability

n  Layering through Inheritance
q  Abstract classes at Layer 0 etc.,

423

Broker Pattern

n  Context
q  Distributed, possibly heterogeneous system of independent

co-operating “components”

n  Problem
q  How to partition functionality to deliver a set of decoupled,

interoperating components
n  Solution

q  Introduce a Broker component to decouple clients and
servers

424

107

Broker Pattern:Structure

425

Client
call_server()
start_task()
use_Broker_API

Client-side
Proxy
pack-data()
unpack_data()
send_request()
return()

Client-side
Proxy
pack-data()
unpack_data()
send_request()
return()

Server-side
Proxy
pack-data()
unpack_data()
call_service()
send_response()

Broker
main_event_loop()
update_repository()
register_service()
acknowledgement()
find_server()
find_client()
forward_request()
forward_response()

Bridge
pack_data()
unpack_data()
forward_message()
transmit_message()

Server
initialise()
enter_main_loop()
run_service()
use_Broker_API

calls

calls

calls

transfers
message

transfers
message

uses API uses API

1..*

1..*

1..*
1..*

1..*

1..*
1

1

1

1

1

1

1
0..1

Broker Pattern: Variants

n  Direct Communication Broker System
q  Clients communicate directly with servers, broker identifies

the communication channel
n  Message Passing Broker System

q  Servers use type of message to determine action
n  Trader System

q  Client-side servers provide service ids rather than server
ids

n  Adapter Broker System
n  Callback Broker System

q  Reactive, event-driven model; makes no distinction
between clients and servers

426

Broker Pattern: Consequences

n  Benefits
q  Location transparency
q  Changeability/Extensibility of components
q  Portability
q  Interoperability between Broker Systems
q  Reusability
q  Testing and Debugging

n  Liabilities
q  Restricted efficiency
q  Lower fault tolerance
q  Testing and Debugging

427

Presentation-Abstraction-Control Pattern

n  Context
q  Interactive systems with the help of agents

n  Problem
q  Partitioning of interactive systems horizontally and

vertically
n  Solution

q  Structure the solution as a tree-like hierarchy of
PAC agents

428

108

Presentation-Abstraction-Control
Pattern: Structure

429

Data repository

Access to data

Spreadsheet View Co-ordinator

pie chart
bar chart

seat distribution

Top-level PAC agent

Intermediate-level
PAC agent

Bottom-level PAC agents

Presentation-Abstraction-Control
Pattern: Variants
n  PAC agents as active objects
n  PAC agents as processes

430

Presentation-Abstraction-Control
Pattern: Consequences
n  Benefits

q  Separation of Concerns
q  Support for Change/Extension
q  Support for multi-tasking

n  Liabilities
q  Increased system complexity
q  Complex control components
q  Efficiency
q  Restricted applicability

431

Summary

n  Patterns
q  Open, informal, abstract solutions to a general, recurring

problem in a particular context
q  Capture “best practice” experience of design
q  Can be organised as Catalogues or as Pattern Languages
q  Differ from ABAS which are closed, formal composable

abstractions
n  Architectural Patterns are a sub-category of patterns

q  To do with “gross structure”
q  But arguably ALL patterns are architectural

432

109

Topic 8: Domain-Specific
Software Architecture

Domain-Specific Software Architecture
(DSSA)
n  “The relationships between functions in programs for

a software domain
n  This is also known as a reference model, functional

partitioning, meta-model, logical model, . . .
n  Why do we want this?

n  1. To build better: tools, specification languages, domain-
specific reusable components, application frameworks,
product families.

n  2. To understand better. Software problems are very complex.
A DSSA is ready-made, reusable domain analysis, problem
decomposition.

434

Example DSSA: Architecture (the real
kind)
n  The problem: “obtain an artificial environment for some

human activity”.
n  Specific instances of this problem: a house, an

apartment, a store, a warehouse, a jail, a paint factory.
n  User: wants the building
n  Constructor: builds the building
n  Requirements: two-car garage, roof will last 30 years,

doorways have 5 meter clearance, ...
n  Specifications: plans/blueprints

435

Architecture (the real kind) - 2

n  These instances of buildings have much in
common and can reuse analyses:
 • Functional requirements: how many people
should this building hold? how should it be
heated/cooled? how should the parts be
connected?
 • Non-functional requirements: how easy is it
to add an addition? how secure should it be?
how many years should it last?

436

110

Architecture (the real kind) - 3

n  These instances can also reuse designs/
components:
 • house plans
 • trusses
 • door-knobs

n  How does the reuse of designs/components
affect the quality of the resulting building?

437

The DSSA Solution

n  Three kinds of knowledge:
 • how to decompose the composite problem into
component problems

 • how to solve each of the component problems
 • how to compose the individual solutions of the
component problems into a solution of the composite
problem

n  This knowledge is not trivial. The ease of the solution
to an instance of a class depends on the existence of
a DSSA for that class.

438

Solving Problems with DSSAs

n  Decompose the problem into the language of the
DSSA: the atomic actions (install wiring, generate an
attribute evaluation module, create a cache
manager, ...).

n  Different atoms will be required for different end-
products.

n  The DSSA does not specify an inventory that all
products must use.

n  Some atoms may exist as off-the-shelf components.
n  Some may need to be tailor-made.
n  A DSSA focuses requirements/design decisions;

highlights changes from canonical solutions.

439 440

111

441 442

443 444

112

445 446

447 448

113

449 450

451 452

114

Topic 9: Discipline of
Software Architecture

Software Architecture

n  Dan Bredemeyer outlines Software Architecture in
the following way:
q  Architecture: Addressing “What is SW Architecture?; architecture

views, patterns, styles, component specs., interfaces etc.,
q  Architecting: How do I create, recapture or migrate an

architecture?: modelling, documenting, assessing.
q  Architects: What are the roles, responsibilities and skills of

architects?
q  Architecture Strategy: Why do architecture? And When?:

competitive differentiation
q  Architectural context: Where in the organisation is architecture

done?

454

Bredemeyer’s Software Architecture
Model (1)

455

guide
architects

guide
designers

Meta-Architecture

Architecture

Architecture Guidelines
and Policies

Conceptual Architecture

Logical Architecture

Execution Architecture

Bredemeyer’s Software Architecture
Model (2)

456

Meta-Architecture
• Architectural vision, principles, styles, key concepts and mechanisms

• Focus: high-level decisions that will strongly influence the structure of the system; rules
certain structural choices out, and guides selection choices and tradeoffs among others

Architecture
• Structures and relationships, static and dynamic views, assumptions and rationale

• Focus: decomposition and allocation of responsibility, interface design, assignment to
processes and threads

Architecture Guidelines and Policies

• Use model and guidelines: policies, mechanisms and design patterns;
frameworks, infrastructure and standards

• Focus: guide engineers in creating designs that maintain the integrity of
the architecture

115

Bredemeyer’s Software Architecture
Model (3)

457

Conceptual Architecture

• Architecture diagram, CRC-R cardsFocus: identification of components
and allocation of responsibilities to components

Logical Architecture

• Updated Architecture diagram (showing interfaces), Focus: design of
component interactions, connection mechanisms and protocols;
interface design and specification; providing contextual information for
component users

Execution Architecture

• Process view (shown on Collaboration Diagrams)Focus: assignment of
the runtime component instances to processes, threads and address
spaces; how they communicate and co-ordinate; how physical resources
are allocated to them

Conceptual Architecture

458

Clerk dialog

Balance books Receive payments Enter sales

Accounts Customers

• Abstract, system-wide view

• Basis for communication

Logical Architecture

459

Context_Manager Application #1

• “Blueprint”: precise, unambiguous, actionable

• Basis for supplier/client contract

ContextManager

ContextData

ContextParticipant

Execution Architecture

460

<<process>>

r:ReservationAgent

{location = reservation server}

<<process>>

t:TripPlanner

{location = client}

<<process>>

h:HotelAgent

{location = hotel server}

<<process>>

t:TicketingManager

{location = airline server}

CORBA ORB

server

client

• Configuration of components at run-time

• Basis for early system tuning

116

Process Overview

461

Init/Commit

Architectural
Requirements

System
Structuring

Architectural
Validation

Deployment

How to Create a Good Architecture

n  Elicit stakeholder goals
q  Ensure architecture supports what is valued and scopes

out what is not
n  Bredemeyer creates Context Maps, Stakeholder Profiles for

documentation
q  Drives creation of principles, selection of architectural

styles, and selection/creation of mechanisms in “meta-
architecture phase”

q  Functionality goals are starting points for Use Cases
q  Quality goals are starting points for non-functional

requirements specification

462

Functionality Goals

n  Functional requirements capture the intended
behaviour of the system

n  Use Cases capture who (actor) does what
(interaction) with the system for what purpose (goal)
without dealing with system internals

n  A Use Case defines a goal-oriented set of
interactions between external actors and the system
under consideration

463

Quality Goals

n  Qualities are properties or characteristics of the
system that its stakeholders care about and hence
will affect their degree of satisfaction with the
system.

n  Explicit, documented qualities are needed to:
q  Define architectures so that they achieve required qualities
q  Make tradeoffs
q  Form a basis for comparing alternatives
q  Enhancing communication within architecture team and

between architects and stakeholders
q  Evaluate architectures to ensure compliance

464

117

Init/Commit Summary

n  Gain Management Sponsorship
q  Purpose: Ensure management support
q  Activities: Create/communicate the architectural

vision showing how it contributes to long-term success
q  Checks: Resources? Full-time architect-team

members? Management championship?
n  Build the Architecture team

q  Purpose: ensure a cohesive and productive team
q  Activities: Use arch. vision to build team alignment;

assess team capabilities and needs; establish team
operating model

q  Checks: strong accepted leader? Collaborative,
creative team? Effective decision-making?

465

Architectural Requirements Summary

n  Capture Context, Goals and Scope
q  Ensure architecture is aligned to business strategy

and directions, and anticipates market and
technology changes

n  Capture Functional Requirements
q  Document, communicate and validate the

intended behaviour of the system
n  Capture Non-Functional Requirements

466

System Structuring Summary

n  Create the Meta-Architecture
q  Make strategic architectural choices to guide the

architecting effort
n  Create the Conceptual Architecture

q  Create conceptual models to communicate the architecture
to managers, project managers, developers and users

n  Create the Logical Architecture
q  Create detailed architectural specs. In a way that is directly

actionable

467

Validation Summary

n  Validate the Architecture
q  Assess the architecture to validate that it meets

the requirements and identify issues and areas for
improvement early

q  Construct prototypes or proof-of-concept
demonstrators or skeletal architecture to validate
communication and control mechanisms

q  Conduct reviews
q  Conduct architectural assessments (e.g., SAAM

Action Guide)

468

118

Deployment Summary

n  Build Understanding
q  Help all developers understand the architecture, its

rationale, and how to use it.
q  Help managers understand its implications for

organisational success, work assignments etc.,
n  Ensure Compliance

q  Ensure designs and implementations adhere to the
architecture and do not cause “architectural drift”

n  Evolve the Architecture
q  Ensure the architecture remains current

469

Evolutionary Technical Process

470

Pass1 From
Business
Strategy to
Architectural
Strategy

Pass 2
From Strategy
to Concept

Pass 3 From
Concept to
Specification

Pass 4
From
Specification
to Execution

Pass 5
From
Execution
to
Deployme
nt

Architectural
Requirements

Context Goals
Scope

Use cases
Qualities

Refine Use
Cases

Concurrency Developer
needs

System
Structuring

Meta-
architecture

Conceptual
Architecture

Logical
Architecture

Execution
Architecture

Architectur
al
Guidelines

Architectural
Validation

Reasoned
arguments

Impact
Analysis

Estimates Prototypes

Topic 10: Software Architecture
and the UML

*Adapted from “Software Architecture and the UML” by Grady Booch

The Value of the UML

n  Is an open standard
n  Supports the entire software development

lifecycle
n  Supports diverse applications areas
n  Is based on experience and needs of the

user community
n  Supported by many tools

472

119

Creating the UML

473

Booch method OMT

Unified Method 0.8 OOPSLA ´95

OOSE Other methods

UML 0.9 Web - June ´96

public
feedback

Final submission to OMG, Sep ‘97

First submission to OMG, Jan ´97
UML 1.1

OMG Acceptance, Nov 1997
UML 1.3

UML 1.0 UML partners

Contributions to the UML

474

Meyer

Before and after
 conditions

Harel

Statecharts
Gamma, et al

Frameworks and patterns,

HP Fusion

Operation descriptions and
message numbering

Embley

Singleton classes and
high-level view

Wirfs-Brock

Responsibilities

Odell

Classification

Shlaer - Mellor

Object lifecycles

Rumbaugh

OMT

Booch

Booch method

Jacobson

OOSE

Overview of the UML

n  The UML is a language for
q  visualising
q  specifying
q  constructing
q  documenting
 the artifacts of a software-intensive system

475

Building Blocks of the UML

n  Things
n  Relationships
n  Diagrams

476

120

Things in the UML
n  Structural things

q  mostly static parts of a model
n class, interface, collaboration, use case,

active class, component, node
n  Behavioral things

q  dynamic parts of UML models
n  interaction, state machine

n  Grouping things
q  organisational parts of UML

n package, subsystem
n  Other things

q  explanatory parts of UML
n note

477

Relationships
n  Dependency

q  a semantic relationship between two things in
which a change to one thing (the independent
thing) may affect the semantics of the other thing
(the dependent thing)

n  Association
q  a structural relationship that describes a set of

links

478

Relationships

n  Generalisation
q  a specialisation/generalisation relationship in

which the child shares the structure and the
behavior of the parent

n  Realisation
q  a realisation is a relationship in which one

classifier, such as an interface or a use case,
specifies a "contract" that another classifier, such
as a class or a collaboration, guarantees to carry
out

479

Diagrams in UML

480

Use Case
Diagrams Use Case

Diagrams Use Case
Diagrams

Scenario
Diagrams Scenario

Diagrams Collaboration
Diagrams

State
Diagrams State

Diagrams Component
Diagrams

Component
Diagrams Component

Diagrams Deployment
Diagrams

State
Diagrams State

Diagrams Object
Diagrams

Scenario
Diagrams Scenario

Diagrams Statechart
Diagrams

Use Case
Diagrams Use Case

Diagrams Sequence
Diagrams

State
Diagrams State

Diagrams Class
Diagrams

Activity
Diagrams

Models

121

Requirements
n  Structure

q  e.g., system hierarchies, interconnections
n  Behavior

q  e.g., function-based behaviors, state-based behaviors
n  Properties

q  e.g., parametric models, time variable attributes
n  Requirements

q  e.g., requirements hierarchies, traceability
n  Verification

q  e.g., test cases, verification results

481

Evaluation Criteria
n  Ease of use
n  Unambiguous
n  Precise
n  Complete
n  Scalable
n  Adaptable to different domains
n  Capable of complete model interchange
n  Evolvable
n  Process and method independent
n  Compliant with UML 2.0 metamodel
n  Verifiable

482

Design Goals
n  Satisfy UML for SE RFP requirements

q  6.5 Mandatory req’ts, 6.6 Optional req’ts
n  Reuse UML 2.0 to the extent practical

q  select subset of UML 2.0 reusable for SE apps
q  parsimoniously add new constructs and diagrams

needed for SE
n  Incrementally grow the language

q  prevent scope and schedule creep
q  take advantage of SE user feedback as language

evolves via minor and major revisions

483

UML 2.0 Support for SE

n Allows for more flexible System, Subsystem and
Component representations

n Structural decomposition
q  e.g., Classes, Components, Subsystems

n System and component interconnections
q  via Parts, Ports, Connectors

n Behavior decomposition
q  e.g., Sequences, Activities, State Machines

n Enhancements to Activity diagrams
q  e.g., data and control flow constructs, activity partitions/

swim lanes

484

122

UML 2.0 Support for SE (cont.)

n  Enhancements to Interaction diagrams
q  e.g., alternative sequences, reference sequences,

interaction overview, timing diagrams
n  Support for information flows between components
n  Improved Profile and extension mechanisms
n  Support for complete model interchange, including

diagrams
n  Compliance points and levels for standardizing tool

compliance
n  Does not preclude continuous time varying

properties
q  especially important for SE applications

485

UML 2.0 Diagram Taxonomy
Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram Component
Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

486

Diagrams

n  A diagram is a view into a model
q  Presented from the aspect of a particular

stakeholder
q  Provides a partial representation of the system
q  Is semantically consistent with other views

n  In the UML, there are nine standard diagrams
q  Static views: use case, class, object, component,

deployment
q  Dynamic views: sequence, collaboration,

statechart, activity

487

Use Case Diagram

n  Shows a set of use cases and actors and
their relationships

488

123

Use Case Diagram

n  Captures system functionality as seen by
users

n  Built in early stages of development
n  Purpose

q  Specify the context of a system
q  Capture the requirements of a system
q  Validate a system’s architecture
q  Drive implementation and generate test cases

n  Developed by analysts and domain experts
489

Class Diagram
n  Shows a set of classes, interfaces, and

collaborations and their relationships

490

Class Diagram

n  Captures the vocabulary of a system
n  Addresses the static design view of a

system
n  Built and refined throughout development
n  Purpose

q  Name and model concepts in the system
q  Specify collaborations
q  Specify logical database schemas

n  Developed by analysts, designers, and
implementers

491

Object Diagram

n  Shows a set of objects and their relationships

492

124

Object Diagram
n  Represents static snapshots of instances of

the things found in class diagrams
n  Addresses the static design view or static

process view of a system
n  Built during analysis and design
n  Purpose

q  Illustrate data/object structures
q  Specify snapshots

n  Developed by analysts, designers, and
implementers

493

Component Diagram

n  Shows the organisations and dependencies
among a set of components

494

Component Diagram

n  Addresses the static implementation view of
a system

n  Built as part of architectural specification
n  Purpose

q  Organise source code
q  Construct an executable release
q  Specify a physical database

n  Developed by architects and programmers

495

Deployment Diagram
n  Shows the configuration of run-time processing nodes

and the components that live on them

496

125

Deployment Diagram

n  Captures the topology of a system’s
hardware

n  Built as part of architectural specification
n  Purpose

q  Specify the distribution of components
q  Identify performance bottlenecks

n  Developed by architects, networking
engineers, and system engineers

497

Activity Diagram
n  Shows the flow from activity to activity within a

system

498

Activity Diagram
n  Captures dynamic behavior (activity-oriented)
n  A special kind of statechart diagram
n  Purpose

q  Model the function of a system
q  Model the flow of control among objects
q  Model business workflows
q  Model operations

499

Sequence Diagram

n  Emphasises the time-ordering of messages

500

126

Sequence Diagram

n  Captures dynamic behavior (time-oriented)
n  A kind of interaction diagram
n  Purpose

q  Model flow of control
q  Illustrate typical scenarios

501

Collaboration Diagram

n  Emphasises the structural organisation of the
objects that send and receive messages

502

Collaboration Diagram

n  Captures dynamic behavior (message-
oriented)

n  A kind of interaction diagram
n  Purpose

q  Model flow of control
q  Illustrate coordination of object structure and

control

503

Statechart Diagram

n  Shows a state machine, consisting of states,
transitions, events, and activities

504

127

Statechart Diagram

n  Captures dynamic behavior (event-oriented)
n  Purpose

q  Model object lifecycle
q  Model reactive objects (user interfaces, devices,

etc.)

505

Architecture and the UML

506

Organisation
Package, subsystem

Dynamics
Interaction
State machine

Design View Implementation View

Process View

Components
Classes, interfaces,
collaborations

Active classes

Deployment View

Nodes

Use Case View
Use cases

UML Software Development Life
Cycle
n  Use-case driven

q  use cases are used as a primary artifact for
establishing the desired behavior of the system,
for verifying and validating the system’s
architecture, for testing, and for communicating
among the stakeholders of the project

n  Architecture-centric
q  a system’s architecture is used as a primary

artifact for conceptualising, constructing,
managing, and evolving the system under
development

507

UML Software Development Life
Cycle
n  Iterative

q  one that involves managing a stream of
executable releases

n  Incremental
q  one that involves the continuous integration of the

system’s architecture to produce these releases

508

128

Lifecycle Phases

509

time

Inception Elaboration Construction Transition

n  Inception Define the scope of the project and
 develop business case

n  Elaboration Plan project, specify features, and
 baseline the architecture

n  Construction Build the product

n  Transition Transition the product to its users

Why do we need models?

5
1
0

Ideal world...

Problem domain

Implementation

Code

Reality

Problem domain

Implementation

Code

Why do we need models?

5
1
1

Ø Models are abstractions of
„the real thing“

Ø They hide complexity by looking
at a problem from a certain
perspective

Ø  Focus on relevant parts
Ø  Ignoring irrelevant details
Ø  What is relevant depends

on the model

Ø  Example: to model the main
components of a car, we do not
need internal details of the
engine.

Problem
domain

Code

Model

abstract
from

abstract
from

Why model software?

5
1
2

Ø Why is code itself not a good model?

Ø Software is getting increasingly more complex
Ø  Windows XP: ~40 millions lines of code
Ø  A single programmer cannot manage this amount

of code in its entirety

Ø  Code is not easily understandable by developers who
did not write it

Ø We need simpler representations for complex systems

Ø Modeling is a means for dealing with complexity

129

UML - Unified Modeling Language

513

Ø Unified Modeling Language (UML)
Ø  General purpose modeling language

(for [OO software] systems)
Ø  Today‟s de-facto standard in

Industry

Ø Sine ‟97, UML is defined/evolved by the
Object Management Group (OMG)

Ø  Founded 1989 by IBM, Apple, Sun, …
Ø  Microsoft joined 2008
Ø  Today more than 800 members

Why “Unified” Modeling Language?

514

What is UML?

515

UML is a standardized language for specifying,
visualizing, constructing and documenting

(software) systems

ØSpecification: the language is supposed to be
simple
enough to be understood by the clients

Ø Visualization: models can be represented
graphically

ØConstruction: the language is supposed to be
precise enough to make code generation possible

ØDocumentation: the language is supposed to be
widespread enough to make your models
understandable by other developers

What is UML?

516

Ø UML defines
Ø  Entities of models and their (possible) relations
Ø  Different graphical notations to visualize structure

and behavior

Ø A model in UML consist of

Ø  Diagrams
Ø  Documentation which complements the diagrams

130

What UML is not !

517

Ø Programming language
Ø  this would bound the language to a specific

computing architecture
Ø  however code generation is encouraged

ØSoftware development process
Ø  Choose your own process, (e.g. Waterfall-model, V-model, …)

Ø  Use UML to model & document

ØCASE tool specification
Ø  however tools do exist: Sun, IBM Rose, Microsoft

Visio, Borland Together etc.

Diagrams in UML

518

Ø UML currently defines 14 types of diagrams
Ø  7 types of Structure Diagrams
Ø  7 types of Behavior Diagrams

Ø Different diagrams provide different levels of
abstraction
Ø  High-level structure vs. low-level structure

Example: components vs. objects

Ø  High-level behavior vs. low-level behavior
Example: use-case vs. feature-call sequence

Diagrams in UML

519

Elements of Use Case diagrams

520

Ø Entities:
Ø  actors
Ø  use cases

Ø Relations:
Ø  association between an
actor and a use case
Ø  generalization between

actors
Ø  generalization between

use cases
Ø  dependencies between

use cases
Ø Comments:

Ø  system boundaries

Actor 1

Use Case 1

Actor 2

Use Case 3

Use Case 4

Use Case 2

<<include>>

Use Case 5

<<extend>>

131

Use Case specification

521

Ø  Each Use Case shown in a diagram should be
accompanied by a textual specification

Ø The specification should follow the scheme:
Ø  Use Case name
Ø  Actors
Ø  Entry Condition
Ø  Normal behavior
Ø  Exceptions
Ø  Exit Condition
Ø  Special Requirements (e.g. non-functional requirements)

Use Case specification

522

Ø  Example for „ Pay Food“ Use Case

Name: Pay Food

Actors: Client, Teller

Entry Condition: Client has food and wants to pay it

Normal behavior: Teller types in food; Total amount is shown on
display; Client puts card into reading device; Amount gets
withdrawn; If not enough money on card, then an error message is
shown; Return card to client

Exceptions: If card is not readable, then show error message and
return card; If power failure while card in reading device, wait
until power is back and return card – payment needs to be redone

Exit Condition: Client has paid the food and gets the card back

Diagrams in UML

523

Activity diagrams

524

Ø Activity diagrams are used to model (work)flows

Ø They are used visualize complex behavior, e.g.
Ø  Business process
Ø  Algorithms (though less common)

Ø Tokens are used to determine the flow, similar to
Petri-nets

Ø A common usage: detailed modeling of Use Cases

132

Elements of Activity diagrams

525

Ø Action: atomic element, no
further splitting possible

Ø Activity: can contain activities,
actions, control nodes

Ø  Control nodes: used to denote
control struture in the flowgraph

Action name

Action2

Action1 In-
Param

activity name

Out-
Param

Allows
refinement

Initial node:
start of a flow

Splitting
node

Synchroniza
tion node

End node:
terminates the

activity

Decision- /
Merging node

An activity diagram for the case study

526

Type in food

Activity Pay_Food

Display food costs

Display card amount

Read card

Insert card

compare

 Withdraw amount

Remove card

Display error

Reverse entry

[sufficient amount]

[insufficient
amount]

Pay Desk Display Card Reader

Diagrams in UML

527

UML Class diagrams

528

Ø  Keep in mind:
Ø  Use Cases represent an external view of the

system‟s behavior
Ø  Classes represent inner structure of the system

à No correlation between use cases and classes

Ø  Class diagrams are used at different levels of

abstraction with different levels of details
Ø  Early phase: identifying classes and their relations

in the problem domain (high-level, no
implementation details)

Ø  Implementation phase: high level of detail
(attributes, visibility, …), all classes relevant to
implement the system

133

Classes

529

A class encapsulates state (attributes) and behavior
(operations)

Ø  Each attribute has a type
Ø  Each operation has a signature

The class name is the only mandatory information

Cafeteria_Card
amount : Float
Id: String
get_amount(): Integer
get_id(): String
withdraw(Integer)

Name

Type

Signature
Operations

Attributes

More on classes

530

Valid UML class diagrams

Corresponding BON diagram
Ø  No distinction between attributes

and operations
(uniform access principle)

Cafeteria_Card

Cafeteria_Card
get_amount
get_id

NONE
Amount
id

Cafeteria_Card
Amount
id
get_amount()
get_id()

More on classes

531

Ø Abstract classes have a italicized class name
or {abstract} property (also applicable to operations)

OR

Ø  Parameterized classes

Address _Book
<<bind>> <T->Address, k-> 250>

Card
id
get_id()

Card
{abstract}
id
get_id()

T, k: Integer
List

items: T[0.. k]

Interface classes

532

Ø  Interface classes have a keyword <<interface>>
Ø  Interfaces have no attributes
Ø  Classes implement an interface using an implementation

relation

<<interface>>
ICard_Reade
r

read() write()

ICard_Reader

read() write()

134

Generalization and specialization

533

Ø Generalization expresses a
kind-of (“is-a”) relationship

Ø Generalization is implemented
by inheritance

Ø  The child classes inherit
the attributes and
operations of the parent
class

Ø Generalization simplifies the
model by eliminating
redundancy

Card

Subclass

Cafeteria_Card

Superclass

Associations

534

Ø A line between two classes denotes an association
Ø An association is a type of relation between classes
Ø Objects of the classes can communicate using the

association, e.g.
Ø  Class A has an attribute of type B
Ø  Class A creates instances of B
Ø  Class A receives a message with argument of type B

Class A Class B
uses

Optional name
Optional reading

direction

Role A Role B
Multiplicity Multiplicity

Optional role
Optional multiplicity

Association multiplicity

535

Ø Multiplicity denotes how many objects of the class take
part in the relation
Ø 1-to-1

Ø  1-to-many

Ø  many-to-many
works for * *

City 1 is capital of 1 Country

Mother 1..* Child

Person Company

Association roles

536

Ø Different instances of an class can be differentiate
using roles

Ø  Example: Invoice and shipping address are both
addresses

Ø  Example: Position hierarchy

1

subordination

chief

subordinate

Order Invoice address for Invoice add. Address
0..1

Shipping address for Shipping add.

0..1

Position *

135

Special associations

537

Ø  Aggregation – “part-of” relation between objects
Ø  Component can be part of multiple aggregates
Ø  Component can be created and destroyed

Ø Composition – strong aggregation
Ø  A component can only be part of a single aggregate
Ø  Exists only together with the aggregate

Curriculum Course
*

ZoneButton
3

independently of the aggregate
Aggregate

TicketMachine

Component

More on associations

538

Ø Ordering of an end – whether the objects at this end
are ordered
ØChangeability of an end – whether the set of objects at
this end can be changed after creation

Polygon 3..* Point

{frozen,
{oorrddeerreedd}}

Navigability of association

539

Ø  Associations can be directed
Ø Direction denotes whether objects can be accessed
through this association

Card Card_Reader

Card Card_Reader

Card Card_Reader

Card knows about
Card_Reader

Card_Reader knows
about Card

Card and Card_Reader
know about each other

Class diagram for the case study

540

Money_Slot
money_In()
money_Out()

1

validate_Bill()

1

1

1 1 1

1 1

1 1

1
1

1

1

ETH_Card
id

Cafeteria_Card
amount
read() write()

Pay_Automaton Pay_Desk

input_food()
compare()

Display

show_Amount()
show_Error()

Card_Reader

card_insert()
card_Amount()

136

Diagrams in UML

541

UML Object diagrams

542

Ø An Object diagram is used to denote a snapshot of the
system at runtime

Ø  It shows the existing objects, their attribute values
and relations at that particular point of time

Object identifier

Link: name or role-
name are optinal

42: Cafeteria_Card pd1: Pay_Desk
id=235813
amount=25.50

Diagrams in UML

543

UML packages

544

A package is a UML mechanism
for organizing elements into
groups
Ø Usually not an application

domain concept
Ø Increase readability of UML
models
Decompose complex systems
into subsystems
Ø Each subsystem is modeled as
a package

R

Q

P

<<import>>

<<import>>

137

Diagrams in UML

545

Component diagrams

546

Ø Entities:
Ø  components

•  programs
•  documents
•  files
•  libraries
•  DB tables

Ø  interfaces
Ø  classes
Ø  objects

Ø Relations:
Ø  dependency
Ø  association

(composition)
Ø  implementation

<<component>>

DataBase

<<component>>

Business

ODB
C

<<component>>

Business

<<provided interfaces>>
Interface_m

<<required interfaces>>
Inteface_n

<<realization>>
Class_A
Class_B

<<artifact>>
library.jar

Diagrams in UML

547

Overview

548

Ø We will now look at two more diagrams which are used to
model the behavior of a system.

Ø Sequence diagrams: used to describe the interaction of
objects and show their “communication protocol”

Ø State diagrams: focus on the state of an object (or

system) an how it changes due to events

138

Sequence diagrams

549

:Client :Card_Reader

insertCard()

insertPIN()

Time

Ø Entities:
Ø  objects (including

instances of actors)
Ø Relations:

Ø  message passing
Ø  Sugar:

Ø  lifelines
Ø  activations
Ø  creations
Ø  destructions
Ø  frames

Actors and
objects:
columns

Lifeline:
dashed
line

Activation
s: narrow
rectangles

Messages: arrows

Nested messages

550

The source of an arrow indicates the activation which sent
the message
An activation is as long as all nested activations

:Client :C_Reader

insertCard()

:ClientData

check(data)

ok / nok
displayMessage(text)

:Display

Data flow

Creation and destruction

551

Creation is denoted by a message arrow pointing to the
object

In garbage collection environments, destruction can be
used to denote the end of the useful life of an object

:Terminal

start()
:Session

log()
Destruction

close()

Creation

From Use Cases to Sequence diagrams

552

Sequence diagrams are derived from flows of events of
use cases

An event always has a sender and a receiver
Ø Find the objects for each event

Relation to object identification
Ø Objects/classes have already been identified during
object modeling
Ø Additional objects are identified as a result of dynamic
modeling

139

:Money_Slot
:Client

:Card_Reader

insert card

:Caf_Card

Read ()

:Display

Show_Amount()

draw card

amount

 Example Sequence diagram

553

insert money validate()

Show_Amount()

Example Sequence diagram

554

Ø The diagram shows only the successful case

Ø  Exceptional case could go either on another diagram or
could be incorporated to this one

Ø Sequence diagrams show main scenario and

“interesting” cases
Ø  interesting: exceptional or important variant

behavior

Ø Need not draw diagram for every possible case

Ø would lead to too many diagrams

Interaction frames

555

:Item
:Container

:Processor

process()

increase()

loop
[for each item]

decrease()

alt
[value < 100]

[else]

Fork structure

556

The dynamic behavior is placed in a single object, usually
a control object
It knows all the other objects and often uses them for
direct queries and commands

<<Control>>

140

Stair structure

557

The dynamic behavior is distributed
Ø Each object delegates some responsibility to other
objects
Ø Each object knows only a few of the other objects and
knows which objects can help with a specific behavior

Fork or stair?

558

Object-oriented supporters claim that the stair structure
is better
Ø The more the responsibility is spread out, the
better
Choose the stair (decentralized control) if
Ø The operations have a strong connection
Ø The operations will always be performed in the same
order
Choose the fork (centralized control) if
Ø The operations can change order
Ø New operations are expected to be added as a
result of new requirements

Diagrams in UML

559

State Machine Diagrams

560

Ø UML State Machine Diagrams are a powerful notation to
model finite automata

Ø  It shows the states which an object or a (sub)system –
depending on the level of abstraction – can have at
runtime

Ø  It also shows the events which trigger a change of state

141

State Machine diagrams

561

Ø Entities:
Ø  states: name, activity, entry/exit action

Ø  Relations:
Ø  transitions between states: event, condition, action

State 1

do / activity
entry / action
exit / action

State 2

do / activity
entry / action
exit / action

event (arg) [condition] / action

States :
r o u n d e d
rectangles

Transitions:
arrows Start

marker

End
marker

State Machine diagram for the case
study

562

Request money
Cancel/ return_card

do / increase amount entry / validate money

/ return_card

Card check

Remember: event (arg) [condition] / action

Ready

Load card

[Card = !OK]
/ return_card

Insert_Card

[Card = OK]

Insert_Money Done

Composite/nested State Machine
diagrams

563

Activities in states can be composite items that
denote other state diagrams

Sets of substates in a nested state diagram can be
denoted with a superstate
Ø Avoid spaghetti models
Ø Reduce the number of lines in a state diagram

State diagrams: example composite state

564

Off

On

Working

Blinking

Red
Yellow

Yellow
Green

Red Green

TurnOn

TurnOff

SwitchOn
SwitchOff

after 3 sec

after 45 sec after 5 sec

after 30 sec

TrafficLight

142

Example: superstate

565

Idle
entry / clear balance

CollectMoney

TicketSelected
entry / compute change

ExactlyPaid
do / dispense ticket

OverPaid
do / dispense change

insCoin(amount) / add to balance

selectTicket(tkt)

[change > 0] [change = 0]

[change < 0]

[change
dispensed]

[ticket
dispensed]

Superstate

Expanding the superstate

566

Transitions from other states to the superstate enter
the first substate of the superstate
Transitions to other states from a superstate are
inherited by all the substates (state inheritance)

do / store coins do / issue ticket do / print ticket

ExactlyPaid
do / dispense ticket

Dispense as atomic
activity
[change = 0]

[change

dispensed]

[ticket
dispensed]

Dispense as
composite
activity

State diagram vs. Sequence diagram

567

State diagrams help to identify
Ø Changes to an individual object over time

Sequence diagrams help to identify
Ø The temporal relationship between objects
Ø Sequence of operations as a response to one or more
events

Diagrams in UML

568

143

Practical tips

569

Ø Create component diagrams only for large, distributed
systems

Ø Create state diagrams only for classes with complex,
interesting behavior (usually classes representing entities
from the problem domain or performing control)

Ø Create activity diagrams for complex algorithms and
business processes (not for every operation)

Ø Create sequence diagrams for nontrivial collaborations
and protocols (not for every scenario)

Ø Don‟t put too much information on a diagram

Ø Choose the level of abstraction and maintain it

Topic 11: Architecture and
Component-Based
Development

Architectural Mismatch

n  The biggest single problem for Component-
Based Development is “architectural
mismatch”

n  A component created for one context won’t
work in another

n  Recent work by John Daniels and John
Cheeseman about specifying components
addresses this problem

571

Component Concepts

572

0..n

Component
Interface

Component
Specification

0..n1. .n

Component
Implementation

0..n

1

Installed
Component

0..n

1

Component
Object

0..n 1

+supportedInterface

+realization

+installation

+instance

1. .n 0..n

1

0..n

1

0..n

1

144

Component Concepts

n  Component Interface
q  How to use the component

n  Component Specification
q  How to build the component

n  Component Implementation
q  Software that meets a component specification

n  Installed Component
q  Executable

n  Component Object
q  Instantiation of a component

573

Problems with Interfaces

n  The operational interface of a component is a
list of operations and their signatures

n  But this tells you how to USE a component…
q  E.g., what legal messages to send

n  ..but not how it will behave
q  Programming syntax can’t tell us, we need

semantic interfaces
n  Therefore we need to separate out the notion

of a Component Interface from a Component
Specification

574

Two distinct contracts

575

Realization contract: a
contract between the
component specification
and a component
implementation.
'Negotiated' between . ..

interface

ComponentSpecification Client<<use>>

interface

ComponentImplementation

<<realize>>

Usage contract: a contract between a
component object's interface and a client.
'Negotiated' between the Specifier (the
architect) and the Client programmer

Interfaces v Component Specs.

n  Component Interface
q  Represents usage

contract
q  Provides a list of

operations
q  Defines underlying logical

information model
specific to that interface

q  Specifies how operations
affect or rely on the
information model

q  Describes local effects
only

n  Component Specification
q  Represents the

realisation contract
q  Provides a list of

supported interfaces
q  Defines the un-time unit
q  Defines the relationships

between the information
models of different
interfaces

q  Specifies how operations
should be implemented in
terms of usage of other
interfaces

576

145

Two Levels of Component Interfaces

n  Cheeseman and Daniels propose two basic levels of
components/interfaces…

n  System Interfaces
q  Derived from use cases

n  One system interface supporting one UI dialog type
q  E.g., ‘Make Reservation’ dialog type which uses

‘IMakeReservation’ System Interface
q  Use Case steps -> individual operations

n  Core Business Interfaces
n  Represent fundamental services that support system

use cases
q  Requires identifying <<core types>>

577

An Architecture for CBD

578

<<dialog type>>

GUI

<<business type>>

Room

<<business type>>

RoomType

<<core type>>

Hotel
“Core” or
Fundamental
services

“System” level

“Front-end”

How to Design a First-Cut
Architecture for CBD
n  Create a “Business Type” Diagram

q  A UML class diagram representing the key concepts and
the associations between them

n  Separate the Core Types from other “business
types”

n  Add an Interface Type for each Core Type identified
n  Create a GUI “dialog type” by mapping steps in Use

Cases to operations on interfaces
q  Requires a standard template to be used with Use Cases

579

Identifying Core Types

n  Core Business Types represent the primary
business information that the system must manage

n  Each core type will correspond directly to a Core
Business Interface

n  A core type has
q  A business identifier (a name or unique number), usually

independent of other identifiers
q  Has independent existence (no mandatory associations),

except to a categorising type
n  NB a mandatory association has a “1” at the opposite end

580

146

Worked Example: Hotel Reservation

n  We want to provide some automated support
for managing hotel reservations using CBD.

581

Concept Model

582

0..1

Hotel Chain

Clerk

Room Type
<<type>>

Room
<<type>>

1

0..n

Bill
Payment

0..1
1

Address

Hotel
<<type>>

1..n
1 1..n

1

1..n

1Customer
<<type>>

0..1

0..n0. .n

Reservation
<<type>>

1

0..n

0..10..n

0..1

1

1

1
1..n

1

1..n

0. .n

1

+contactAddress
0..1

+contactedHotel

0..n
1

1..n

0..n

1

1

+allocation

0..10..n

0..n1

0..1

1

Analysis of the Concept Model

n  The following types are excluded as being
redundant, out of scope etc., or as attributes of other
types
q  Hotel Chain, Clerk, Bill, Payment, Address

n  The following have mandatory associations and will
become system-level <<business types>>
q  Room, RoomType, Reservation

n  The following are left as <<core types>>
q  Customer, Hotel

n  They have meaningful identifiers (names) in the world and
no mandatory associations

583

Adding <<Interface Types>>

n  For each <<core type>> add an <<interface type>>
q  ICustomerMgt and IHotelMgt

n  Remaining <<business types>> are represented in
the class diagram as “contained by” the <<core
types>>

n  Design decisions have to made about which
<<interface type>> owns any associations between
<<business types>>

584

147

Identifying Business Interfaces

585

Creating System-Level Interfaces

n  The <<interface types>> in the previous step
represent core business services
q  They are not user interfaces

n  System-level interfaces are needed for the
<<business types>>
q  These are created by examining the use cases

they participate in

586

Mapping Use Cases to Interfaces

587

MakeReservation Use case
<<dialog type>>

MakeReservation

<<interface type>>

IMakeReservation

1….
2….
3….
4….
5….

Use case steps

588

Use Case
Diagram

Take up a Reservation

Cancel a Reservation

Make a Reservation

ReservationMaker

Update a Reservation

Guest

BillingSystem
Process No Shows

ReservationAdmin
istrator

CRUD hotel, room, customer etc.,

148

Sample Use Case (1)

589

Name Make a Reservation

Initiating Actor Reservation Maker

Goal Reserve a Room at Hotel

Happy Case Scenario:

1.  ReservationMaker asks to make a reservation

2.  ReservationMaker selects hotel, dates and room type

3. System provides availability and price

4.  ReservationMaker agrees to proceed

5.  ReservationMaker provides name and postcode

6.  ReservationMaker provides contact e-mail address

7.  System makes reservation and gives it a tag

8.  System reveals tag to ReservationMaker

9.  System creates and sends confirmation by e-mail

Sample Use Case (2)

590

Extensions

 3. Room Not Available

 a) System offers alternative dates and room types

 b) ReservationMaker selects from alternatives

 6. Customer already on file

 a) Resume 7

Use Case Step Operations

591

MakeReservation

<<interface type>>

IMakeReservation
getHotelDetails()

getRoomInfo()

makeReservation()

Returns a list of
hotels and room
types

Returns price and
availability given hotel,
roomtype and dates

Create a reservation given
hotel, roomtype and dates

The “MakeReservation” use case becomes the
“IMakeReservation” interface

Component Specifications

n  Deciding which components, and which interfaces
they support, are fundamental architectural
decisions

n  Starting assumption: one component spec. per
business interface…

n  …and a single system component spec.for all use
cases…(Reservation System)
q  IMakeReservation would be folded in with other use cases
q  Major alternative option is one per use case

n  …and one each for any existing legacy systems that
need to be “wrapped”

592

149

Initial Component Architecture for a
Hotel System

593

IMakeReser
vation

ITakeUpRes
ervat ion

Reservation System
<<comp spec>>

IBill ing

Billing_System
<<comp spec>>

ICustomerM
gmt

CustomerMgr
<<comp spec>>

IHotelMgmt
HotelMgr

<<comp spec>>

Summary

n  An architectural approach to CBD requires:
q  Separating Component Interfaces from

Component Specifications
q  Creating Interfaces (usage contracts) for each

core business function
q  …and System-level Interfaces for use case

functionality
q  Providing Component Specifications to support

the Component Interfaces
q  Dialog types are used to provide GUIs for the

application

594

Topic 12: Software Architecture
Evaluation

Outline

n  Architecture Evaluation Introduction
n  Evaluation Methods
n  Component Based Architecture Evaluation
n  Beyond Components
n  Conclusion

596

150

Introduction

n  What is architecture Evaluation
q  Architecture Assessment/Evaluation: Assign a specific

value to software architecture suitability
q  Architecture Review: Doesn’t assign a specific as a

measure of suitability
q  Architecture Analysis: Techniques used to perform

architecture reviews/assessment/evaluation
n  Being used in two context

q  A validation step for an architecture being developed
q  A step in the acquisition of software system

597

Architecting Landscape

598

Architecture Centric Process

Architecting Process Architecture Evaluation

ADL

Architecture Constituents

Architecture Composition

Benefits

n  Financial
n  Increased Understanding and Documentation of

System
n  Detection of Problems with Existing Architecture
n  Prediction of final product quality/Risk Management
n  Clarification and Prioritisation of Requirements
n  Organisational Learning

599

Evaluation Preconditions

n  Understanding of Evaluation Context
n  The Right People
n  Organisational Expectations and Support
n  Evaluation Preparation
n  Architecture Representation

600

151

Evaluation Activities

n  Recording and Prioritising
n  Evaluating

q  Cost
q  Functionality
q  Performance
q  Modifiability
q  …

n  Reviewing Requirements
n  Reviewing Issues
n  Reporting Issues

601

Evaluation Output

n  Ranked Issues
n  Report
n  Scenario Set
n  Preliminary System Predictions
n  Enhanced Documentation

602

Evaluation Approaches
Review
Method

Generality Level of
Detail

Phase What is
Evaluated

Example

Questionnaire General Coarse Early Artifact
Process

SREM

Checklist Domain-
specific

Varies Middle Artifact
Process

AT&T

Scenarios System-
Specific

Medium Middle Artifact SAAM
breeds,
ATAM

Metric General or
domain-
specific

Fine Middle Artifact Adapted
Traditional
Metrics

Prototype,
Simulation,
Experiment

Domain-
specific

Varies Early Artifacts

603

Scenario Based Analysis

n  SAAM (Scenario-based architecture analysis
Method)
q  SAAMCS (SAAM Complexity of Changes)
q  ESAAMI (Integrating SAAM in Domain Centric

and Reused Based Development Process)
q  SAAMER (SAAM Evolution and Reusability)

n  ATAM (Architecture Tradeoff Analysis Method)
n  SBAR (Scenario-Based Architecture Reengineering)
n  ALPSM (Architecture Level Prediction of Software

Maintenance)

604

152

Metrics for Quality Attribute

n  Traditional information hiding and
modulisaiton (cohesion/coupling),
complexity metrics

n  Object-Oriented Metrics
n  Architecture Metrics adapted from OO

metrics
q  Depth of Inheritance Tree (DIT)
q  Message Passing Coupling (MPC)
q  Data Abstraction Coupling (DAC)
q  Lack of Cohesion in Methods (LCOM)
q  NOM, NOC, RFC, WMC

605

Architecture Quality Metrics

n  Service Utilising Metrics for component framework
and product line

n  Evolution Metric
q  Evolution Cost Metrics (Add/Remove/Modify cost)
q  Architecture Preservation Factor
q  Architecture Preservation Core

n  SAEM (Software Architecture Evaluation Model)

606

Component Based Architecture
Evaluation
n  Component and frameworks have certified

properties
q  Some properties of components are imposed by

underlying framework
q  Some interaction between components and their

topologies are imposed by underlying framework
n  The certified properties provide the basis for

predicting the properties of systems built from
components

607

Topic 13: Software Architecture
and OO Development

Structure and Space in Object-Oriented
Software

153

‘Space’ in Software

n  Software has no physicality
q  Michael Jackson says in order to create virtual machines

we just create them
q  Fred Brooks Jr. says software is “pure thought stuff”
q  Source code is just a set of instructions that translates into

machine instructions
n  N.B. strictly, therefore, source code is a specification of an

executable program
n  But in architecture (of the built environment) space is

a logical as well as a physical concept

609

Object-Oriented Software
Construction

n  Objects and Classes are behavioural
abstractions
q  We separate objects in Class A from those in Class B

on the basis of their different behaviour
n  But in the machine an object instance is a data

abstraction
q  A pointer or reference is returned to the object’s data

variables ONLY
n  I.e. each object instance has its OWN copy of the data,

but no individual operations – these belong to the class as
a whole

n  Objects are therefore logical abstractions
q  -don’t really exist at machine-level

610

Responsibility-Driven Design (1)

n  Designing object system involves
q  Identifying behavioural abstractions (Object

Types)
q  Assigning them responsibilities
q  Mapping Object Types to Object Classes

n  Enforcing encapsulation and information-hiding
n  Creating Interfaces so that client objects know how to

request executable behaviour from server objects
q  Turning responsibilities into operations

n  and the methods that implement them
q  Turning collaborating classes into data members

to hold Object IDs
611

Responsibility-Driven Design (2)

n  A well-established technique for Responsibility-
Driven Design is CRC cards

n  6” x 4” index cards
q  Divided into 3 fields (Class, Responsibility, Collaborators)
q  One for each candidate Object

n  Used to role-play scenarios to see if responsibilities
have been distributed properly
q  Cheap and fun way to validate the dynamic behaviour of

object systems prior to coding!

612

154

CRC (Class, Responsibility,
Collaboration) Cards

613

Class
Responsibilities Collaborators

The CASE tool is
 a 6” x 4” index

card!

Each person “role-plays”
a class (i.e. a CRC card)
to explore distribution

of responsibilities

Encapsulation and Information
Hiding

614

Robot

+turnLeft()

+turnRight()

+moveForward()

+reverse()

+pickUp()

-grid: Grid

Class name

“data members”,
usually private or

protected and therefore
hidden from clients

Operations, if public, form
the public interface to the

class: note all method
implementations, whether

for private or public
operations, are hidden

Encapsulation

n  Encapsulation is the hiding of all design decisions
that the client doesn’t need to know about. Typically
this includes:
q  Data structures
q  Collaborating classes and objects
q  Methods
q  Private Operations etc.,

n  An object is therefore a sort of protected virtual
space
q  Like a “neighbourhood” in the previous Topic

615

Interfaces (1)

n  Ideally we would like classes and objects to be
completely decoupled from each other
q  But references (objectID’s) are needed otherwise programs

won’t work
q  Collaboration requires some objects to know how to call

other objects and request their behaviour
n  Therefore Interfaces are needed

q  Compare with gateways and access paths in
“Neighborhood Boundary” pattern

q  In Java a special Interface construct is provided
q  In C++ an Abstract Class can be used as a protocol class

to the same effect

616

155

Interfaces (2)

n  Interfaces should be designed to be stable
q  Operation names and parameters of abstract behaviours

n  Implementation can therefore vary without the Client
object needing to know
q  Different methods, even different (collaborating) objects

can handle the request for executable behaviour
q  Client only needs guarantee that the behaviour will be

performed correctly in response to the request (message)
n  N.B. A class can support 1 or many interfaces

617

Interfaces in UML

618

<<interface>>
Runnable

run ()

MyThread

run ()

Class icon
stereotyped to
represent an

Interface

<<realises>>

MyThread

run ()

Runnable
Alternative

“lollipop” notation

The Significance of Interfaces for
Architecture

n  An interface can be thought of as an access path
or gateway to an encapsulated “space”
q  Space can be an object instance, a class, a package or

any logical computational component
n  We need to narrow interface bandwidth between

spaces
q  An interface also implies a dependency

n  If Class A holds a reference to Class B it is dependent
upon it (e.g., may not be compilable without it)

n  If the Interface is physically separate from the class that
realises it and the reference is to the Interface the client is
only dependent on the Interface (recommended)

n  Interfaces can form a “scaffolding” for the system
619

Cyclical Dependency

620

Class A Class B

Class A Class B

Class A Class B

Class C

The arrowhead on the
association means Class A
has a reference to Class B

built into its own
definition. Therefore A is

dependent on B

Class A and Class B depend on
each other; neither can be reused

without the other

Class A depends on Class B, but
Class B depends on Class C and

Class C depends on Class A. Class
B is therefore transitively

dependent on Class A

156

The UML Package Construct

n  UML has a construct higher
than a class
q  The package

n  Represents a “namespace”
for collecting UML elements
q  Often a collection of logical

classes
q  E.g/. Collaboration,

component
n  Same dependency rules

apply

621

C B

This arrow means
“DependsOn”. If the

package collects
classes it means at
least one class in

package C depends
on at least one class

in package B

Dependency Heuristics

n  Minimise all dependencies
n  As far as possible make dependencies unilateral

q  i.e. “one-way”
q  In the previous diagram (top) Class B is reusable and,

provided its interface doesn’t change, can be
reimplemented without disturbance to Class A

n  Avoid cyclical dependencies
q  They seem unilateral but have transitive dependencies

n  Only use bilateral or cyclical dependencies if classes are
designed to work together in ALL circumstances
q  In which case package them together as collaborations or

components

622

Different Kinds of Dependencies

n  B is directly dependent on A
q  if B is a superclass of A
q  if B holds (as a data member) a reference or pointer to A
q  If B refers to A in a parameter in one or more of its

operations
n  In which cases it “uses” A

q  If B refers to A in the implementation of any of its methods
n  B is indirectly, or transitively dependent on A

q  If any other class that B is dependent on is dependent on A
I

623

Levelisation

n  Levelisation is desirable
q  Assuming a “bottom” level 0 each component in a

dependency hierarchy can be assigned a unique level
number

q  Implies a structure which is a Directed Acyclic Graph (DAG)
n  In “good” OO System Structures

q  Abstract, stable (unchanging) classes tend to be at or near
level 0

q  Concrete, volatile (often changing) classes tend to be at the
highest levels
n  We want to minimise the number of classes dependent

on changeable classes

624

157

A Levelised OO System

625

Level 1

A

B C

D E
F

G H

Level 0

Level 3

Level 2

Analysing Structure in OO Systems (1)
n  Simple measurements can be used to measure

the structural quality of OO systems
n  Abstractness

q  the total number of abstract classes (and interface
types in Java) divided by the total number of classes
and types

n  Stability/Volatility
q  The number of efferent couplings (Ce) divided by the

number of efferent couplings plus the number of
afferent couplings (Ce +Ca)
n  Ce is the number of classes inside a package that directly

depend on classes outside the package
n  Ca is the number of classes outside the package that

depend on classes inside the package

626

Analysing Structure in OO Systems (2)

n  Relational Cohesion
q  Relational cohesion (H) is the total number of Relationships

(R) plus 1, divided by the total number of internal
relationships (N)
n  H=R+1/N

n  All these measures can be derived from plotting the
relationship between classes on a spreadsheet

n  The values for Abstractness and Stability can be
plotted on a Stability Graph

627

Stability Graph

628

Abstractness

Volatility 0

1

1

There should be some highly
stable, highly abstract

packages in a “good” design

There should be some
highly concrete, highly
volatile packages in a

“good”design

Most packages should be
distributed in the graph in
positions close to this line

158

Summary

n  Objects are logical structures to which
responsibilities are allocated in design

n  Objects can therefore be thought of architectural
spaces
q  As can Classes, Components and Packages

n  We can apply the lessons of “Neighbourhood
Boundary”
q  Use encapsulation, Interfaces to minimise dependencies

n  We can measure the quality of a structure with
simple dependency metrics

629

Topic 14: Software Architecture
Models

Also Software Architecture

n  Architectural Design
q  process for identifying the subsystems that make up a

system
q  defines framework for sub-system control and

communication

n  Software Architecture
q  description of the system output by architectural design

631

Architectural Design Process

n  System structuring
q  system decomposed into several subsystems
q  subsystem communication is established

n  Control modeling
q  model of control relationships among system components

is established

n  Modular decomposition
q  identified subsystems decomposed into modules

632

159

Architectural Models

n  Static structural model
q  shows major system components

n  Dynamic process model
q  shows process structure of the system

n  Interface model
q  defines subsystem interfaces

n  Relationships model
q  data flow or control flow diagrams

633

CASE Repository Model

634

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator

Call-Return Model

635

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

Real-Time System Control Model

636

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes

160

Selective Broadcasting Model

637

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

Interrupt-Driven Control Model

638

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector

Compiler Model

639

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol
table

OSI Reference Model

640

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Communica tions medium

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

161

Distributed Systems

n  Most large computer systems are implemented as
distributed systems

n  Information is also distributed over several
computers rather than being confined to a single
machine

n  Distributed software engineering has become very
important

641

Distributed Systems Architectures

n  Client/Server
q  offer distributed services which may be called by clients
q  servers providing services are treated differently than

clients using the services
n  Distributed Object

q  no distinctions made between clients and servers
q  any system object may provide and use services from any

other system object

642

Middleware

n  Software that manages and supports the different
components of a distributes system

n  Sits in the middle of the system to broker service
requests among components

n  Usually off-the-shelf products rather than custom
n  Representative architectures

q  CORBA (ORB)
q  COM (Microsoft)
q  JavaBeans (Sun)

643

Multiprocessor Architecture

n  Simplest distributed system model
n  System composed of multiple processes that may

execute on different processors
n  Model used in many large real-time systems
n  Distribution of processes to processors may be

preordered or may be under control of a dispatcher

644

162

Multiprocessor Traffic Control System

645

Traffic lights

Light
control
process

Traffic light control
processor

Traffic flow
processor

Operator consolesTraffic flow sensors
and cameras

Sensor
processor

Sensor
control
process

Display
process

Client/Server Architectures

n  Application is modeled as a set of services that are
provided by servers and a set of clients that use
these services

n  Clients know the servers but the servers do not need
to know all the clients

n  Clients and servers are logical processes (not
always physical machines)

n  The mapping of processes to processors is not
always 1:1

646

Client/Server System

647

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11
c12

Client process

Server process

Representative Client/Server Systems
Part 1
n  File servers

q  client requests selected records from a file
q  server transmits records to client over the network

n  Database servers
q  client sends SQL requests to server
q  server processes the request
q  server returns the results to the client over the network

648

163

Representative Client/Server Systems
part 2
n  Transaction servers

q  client sends requests that invokes remote procedures on
the server side

q  server executes procedures invoked and returns the
results to the client

n  Groupware servers
q  server provides set of applications that enable

communication among clients using text, images, bulletin
boards, video, etc.

649

Client/Server Software Components

n  User interaction/presentation subsystem
n  Application subsystem

q  implements requirements defined by the application within
the context of the operating environment

q  components may reside on either client or server side

n  Database management subsystem
n  Middleware

q  all software components that exist on both the client and
the server to allow exchange of information

650

Representative Client/Server
Configurations - part 1
n  Distributed presentation

q  database and application logic remain on the server
q  client software reformats server data into GUI format

n  Remote presentation
q  similar to distributed presentation
q  primary database and application logic remain on the

server
q  data sent by the server is used by the client to prepare the

user presentation

651

Representative Client/Server
Configurations - part 2
n  Distributed logic

q  client is assigned all user presentation tasks associated
with data entry and formulating server queries

q  server is assigned data management tasks and updates
information based on user actions

n  Remote data management
q  applications on server side create new data sources
q  applications on client side process the new data returned

by the server

652

164

Representative Client/Server
Configurations - part 3

n  Distributed databases
q  data is spread across multiple clients and servers
q  requires clients to support data management as well as

application and GUI components
n  Fat server

q  most software functions for C/S system are allocated to
the server

n  Thin clients
q  network computer approach relegating all application

processing to a fat server

653

Thin Client Model

n  Used when legacy systems are migrated to client
server architectures
q  the legacy system may act as a server in its own right
q  the GUI may be implemented on a client

n  It chief disadvantage is that it places a heavy
processing load on both the server and the network

654

Fat Client Model

n  More processing is delegated to the client as
the application processing is locally extended

n  Suitable for new client/server systems when
the client system capabilities are known in
advance

n  More complex than thin client model with
respect to management issues

n  New versions of each application need to
installed on every client

655

Three-tier Architecture

n  Each application architecture layers (presentation,
application, database) may run on separate
processors

n  Allows for better performance than a thin-client
approach

n  Simpler to manage than fat client approach
n  Highly scalable (as demands increase add more

servers)

656

165

Three-Tier Architecture
from Sommerville

657

Database server

Customer
account
database

Web server

Client

Client

Client

Client

Account service
provision

SQL
SQL query

HTTP interaction

Distributed Object Architectures

n  No distinctions made between client objects and
server objects

n  Each distributable entity is an object that both
provides and consumes services

n  Object communication is though an object request
broker (middleware or software bus)

n  More complex to design than client/server systems

658

Distributed Object Architecture

659

Software bus

o1 o2 o3 o4

o5 o6

S (o1) S (o2) S (o3) S (o4)

S (o5) S (o6)

Distributed Object Architecture
Advantages
n  Allows system designer to delay decisions on where

and how services should be provided
n  Very open architecture that allows new resources to

be added as required
n  System is flexible and scalable
n  Dynamic reconfiguration is possible by allowing

objects to migrate across the network as required

660

166

Uses of Distributed Object Architectures

n  As a logical model that allows you to
structure and organise the system
q  think about how to provide application functionality

solely in terms of services and combinations of
services

n  As a flexible approach to the implementation
of client/server systems
q  the logical model of the system is client/server

with both clients and servers realised as
distributed object communicating through a
software bus

661

Data Mining System Example

662

Database 1

Database 2

Database 3

Integrator 1

Integrator 2

Visualiser

Display

Report gen.

CORBA

n  International standard for an Object Request Broker
(e.g. middleware) to manage distributed object
communication

n  Largely platform and language independent (by
having versions for several OO environments)

n  DCOM is Microsoft’s alternative approach (but it is
highly platform dependent)

663

CORBA Services

n  Naming and trading services
q  allow object to discover and refer to other objects on the

network

n  Notification services
q  allow objects to notify each other when events have

occurred
n  Transaction services

q  support atomic transactions and rollback on failure

664

167

CORBA Application Structure

665

CORBA services

Object request broker

Domain
facilities

Horizontal
CORBA facilities

Application
objects

CORBA Standards

n  Provides a model for application objects
q  COBRA objects encapsulate a state with a well-defined,

language neutral interface

n  A single object request broker that manages
requests for object services

n  A set of object services that may be of use to many
distributed applications

n  A set of common components built on top of these
services

666

Object Request Broker (ORB)

n  Handles object communications
n  Knows about all system objects and their

interfaces
n  Using the ORB a client object binds an IDL

(interface definition language) stub and defines
the interface of the server object

n  Calling the stub results in calls to the ORB which
calls the required object through a published IDL
skeleton that links the interface to the service
implementation

667

ORB-based Communication

668

o1 o2

S (o1) S (o2)

IDL
stub IDL

skeleton

Object Request Broker

168

Inter-ORB Communications

n  ORB’s are not usually separate programs
n  ORB’s are usually linked object libnraries
n  ORB’s handle communication between objects

executing on the same machine
n  Each computer in a distributed system may have its

own ORB
n  Inter-ORB communication is used to handle

distributed object calls

669

Inter-ORB Communications

670

o1 o2

S (o1) S (o2)

IDL IDL

Object Request Broker

o3 o4

S (o3) S (o4)

IDL IDL

Object Request Broker

Network

Topic 15: The OMG’s Model
Driven Architecture (MDA)

Why the MDA?

n  The OMG specified the Object Management
Architecture (OMA) in 1990

n  Specified the CORBA standards
n  Since 1997 has specified a number of non-CORBA

standards
q  Unified Modeling Language (UML)
q  XML/XMI (XML Metadata Interchange)
q  Common Warehouse Model (CWM)
q  MetaObject Facility (MOF)

n  Rapid expansion of new technologies raises issues
of integration

672

169

Aims of the MDA

n  MDA aims to
q  Support evolving standards in diverse application

domains
q  Embrace new technologies and changes in

existing technologies
q  Address the complete lifecycle of

n  Designing Applications
n  Deploying Applications
n  Integrating Applications
n  Managing Applications

q  …while using open data standards

673

Basic Principles

n  “MDA separates the fundamental logic from
behind a specification from the detail of the
particular middleware that implements it”

n  The ‘Architecture’ assures:
q  Portability
q  Cross-platform interoperability
q  Platform independence
q  Domain specificity
q  Productivity

674

“Bottom-line Benefits”

n  Benefits claimed include
q  Reduced cost throughout the application life-cycle
q  Reduced development time for applications
q  Improved application quality
q  Increased return on technology investments
q  Rapid inclusion of emerging new technologies

675

MDA
n  Provides an abstract model

of the middleware
environment with the aim of
bringing standardisation to
application design

n  Leverages existing OMG
standards
q  UML,MOF, CWM

n  Platform-independent
descriptions can be
deployed in many
technologies
q  CORBA, J2EE,.NET etc.,

n  Includes already specified
pervasive services

n  Enables creation of standard
domain models

676

170

MDA Models

n  MDA defines a model as
q  Something that “must be paired with a definition of a

modelling language using semantics provided by the MOF”

n  Three categories of models
q  Computationally Independent (CIM)

n  E.g., business type model (problem space)
q  Platform Independent (PIM)

n  E.g., system type model (specification space)
q  Platform Specific (PSM)

n  Target technology specific (solution space)

677

Model Relationships

n  Models are related by
q  Abstraction
q  Refinement
q  Viewpoint

n  i.e., the mappings can be vertical (abstraction-
refinement) or horizontal

678

Example of Vertical Mapping

n  The PIM version of
Account specifies, say, an
object class Account
without saying anything
about its implementation.

n  A CORBA-specific
implementation which
conforms to this
specification would be a
PSM refinement of that
abstraction

679

Vertical/Horizontal Mapping

n  Viewpoints are projections (i.e., they are not necessarily
disjoint). Therefore the same abstractions may appear in
different viewpoints, but perhaps with different properties.
Because they are at the same level of abstraction this is
referred to as horizontal mapping.

680

171

Using UML to Model Relationships

n  The MDA
proposes
modelling the
mapping rules
themselves as
“first class”
citizens. The
EDOC profile is
a UML profile
that has already
been
established.
Others will follow

681

In practice, the MDA is realised as a
UML Profile: a meta-model of the
middleware environment

Automation of Mapping?

n  An issue that arises – and is critical to the discussion
on Software Architecture – is whether mappings
between models can be abstracted and automated
and reused in tools, or whether the various models are
more important as reference points for creative design

682

Developing Using MDA (1)
n  Development of the application in MDA starts

with a “first-level” PIM
q  With an aspiration to “automatically generate all or most

of the running application”
q  This base PIM expresses only business functionality

and behaviour for client and server
n  Built by business and modelling experts
n  Appears, nevertheless, to be a system’s view of business

information (presumably a model of the business itself is
expressed in a CIM)

n  A second-level PIM adds some aspects of
technology
q  E.g., activation patterns(session, entity), persistence,

transactionality, security levelling etc.

683

Developing in MDA (2)

n  MDA application tools will contain representations of
the Domain Facilities and Pervasive Services
q  Any facility modelled in UML can be imported
q  The PIM will model links to these services

n  The PIM is stored in the MOF and input to the
mapping step for producing the PSM
q  UML Profiles give UML the ability to model both PIMs and

PSMs
n  Profiles are standard extensions for a particular domain

consisting of UML stereotypes and tagged values

684

172

Developing in MDA (3)

n  The MDA definition document specifies 4 ways of
moving from a PIM to a PSM

1.  Transformation by hand, working with each application on
a separate, individual basis

2.  Transformations by hand using established patterns to
convert from the PIM to a particular PSM

3.  The established patterns define an algorithm which is
selected in the MDA tool, producing skeleton code which
is finished by hand

4.  The tool, applying the algorithm, generates the entire
PSM

n  Generate the application from the PSM

685

Issues for Software Architecture (1)

n  From the “Masterplan” view of Software Architecture
q  MDA extends the practical possibilities of “blueprinting”
q  MDA has the aim to fully automate software development

n  From UML PIMs to running application and back
q  NB it is accepted that currently any changes in code would have

to be handcrafted into the UML first
q  Rigorous modelling of mapping rules provides scope for

extending use of formal methods
q  Focus is on transformation methods 3 and 4 in the list

provided in the MDA Definition Document

686

Issues for Software Architecture (2)

n  From the Piecemeal Growth viewpoint:
q  The classification of models validates the significance of a

Problem Space
q  The idea of standard mappings and patterns implies a base

of shared knowledge
q  MDA claims to support iterative development
q  Focus is on transformation methods 1 and 2 in the list

provided in the MDA Definition Document

687

Issues for Software Architecture (3)

n  The MDA will provide a new framework in which the
arguments of both camps can still be put forward

n  The commercial interest in MDA tools will focus on
abstraction/retrieval
q  i.e., vertical mapping
q  Fairly well understood notions of retrieval, existence of

OCL etc., will boost this
q  Relatively easy to automate

n  Research interest may focus on horizontal mapping
q  Developing PIMs from multiple, overlapping viewpoints
q  Possibly not automatable at all

688

173

Summary

n  The OMG’s MDA provides a new framework for the ongoing
debate on Software Architecture

n  Key elements are the 3 classes of models…
q  CIMs, PIMs, and PSMs

n  …and the mappings between them
q  Vertical (abstraction/refinement)
q  Horizontal (viewpoint)

n  … and existing OMG standards
q  UML, CWM, XML/XMI, MOF
q  Pervasive Services, Domain Facilities

n  The PIM->PSM transformation methods are where the future
focus of ‘masterplan’ v ‘piecemeal growth’ will lie

689

Topic 16: Software
Architecture and Process

Architecture, Organisation and
Process

n  Architecture strongly influences Organisation and
Process
q  E.g., Conway’s Law says “organisation follows

architecture, or architecture follows organisation”
n  Waterfall Software Development Life Cycle

q  Implies structured methods
n  Top-down design, step-wise development

q  Together with an hierarchical organisational structure
n  Business Analyst->System Analyst->Project Leader ->

Analyst/Programmer->Programmer
n  Debate on architecture is also a debate on

process

691

‘Heavywight’ Process :ATAM

n  Carnegie Mellon University’s SEI now promotes the
Architecture Tradeoff Analysis Method (ATAM)
q  Successor to SAAM
q  Utilises ABAS (see “Architectural Styles” Topic)

n  Purpose
q  “…is to assess the consequences of architectural decisions

in the light of quality attribute requirements”

n  Aim
q  To assess architectural specifications before resources are

committed to development

692

174

Underlying Concepts of ATAM

n  ATAM focuses on quality attribute requirements
q  What are the stimuli to which the architecture must

respond?
q  What is the measurable and observable manifestation of a

quality attribute by which its achievement is judged?
q  What are the key architectural decisions that impact

achieving the attribute requirement?

693

The Steps of ATAM(1)

Presentation
1.  Present the ATAM

To assembled stakeholders
2.  Present business drivers

 By Project Manager
3.  Present architecture

 By Architect

Investigation and Analysis
4.  Identify architectural approaches
5.  Generate quality attribute utility trees

See discussion on ABAS’
6.  Analyse architectural approaches

694

The Steps of ATAM (2)

Testing
7.  Brainstorm and prioritise scenarios
8.  Analyse architectural approaches

Reporting
9.  Present results

695

Other Heavyweight Processes

n  Capability Maturity Model
n  SSADM
n  Prince
n  MASCOT
n  HOOD

q  General characteristic
n  Process maintained by Management
n  Imposed by QA staff etc.,

696

175

An ‘agile’ process: The SCRUM
Approach
n  The SCRUM Software Development Process

q  For small (10 members or less) development
teams
n  Compare with Surgical Team

q  Utilises rugby-metaphor
n  In a scrum 8 players, each with specific roles, co-

operate tightly together to gain forward movement while
controlling the ball

697

How SCRUM Works

n  Initial Planning Phase
q  Chief architect identified, architecture developed
q  SCRUM teams chosen

n  Can change architecture in discussion with Chief Architect
n  Each team headed by a Scrum Master

q  Functionality delivered in Sprints
n  Typically 1-4 weeks
n  Timeboxed development controlled by short, daily meetings

q  Deadlines are ALWAYS met, even if functionality dropped
n  All identified tasks captured in Backlog

q  Product development completed by a Closure Phase

698

Benefits of SCRUM

n  SCRUM is comparable to other lightweight
processes
q  Dynamic System Development Method, Xtreme

Programming etc.,
n  Focuses effort of the developers on backlog items
n  Communicates priorities constantly to all developers

q  Changing them “on the fly” if necessary
n  Addresses risk dynamically

q  In the construction process itself

699

SCRUM Meetings

n  Each of the daily SCRUM meetings answers the
following 3 questions:

1.  What have you completed, relative to the backlog, since
the last Scrum meeting?

2.  What obstacles got in the way of completing your work?
3.  What specific things do you plan to accomplish, relative

to the backlog, between now and the next Scrum
meeting?

700

176

Other Agile Processes

n  Xtreme Programming
q  Pair programming etc.,

n  Dynamic Systems Development Method
n  Pattern Languages

q  General characteristic
n  Designed and maintained by development staff

701

Architecture and the RUP

n  The most well-known software development
process is the Rational Unified Process
(RUP)
q  Proprietory “process framework” of Rational Inc.
q  Likely to be the basis of the OMG’s

standardisation of process
n  The RUP claims to be:

q  Use-case driven
q  Architecture-centric
q  Object-oriented

702

Multiviewed Software Architecture

n  Rational’s Phillipe Krutchen says that Software
Architecture deals with issues of
q  Abstraction
q  Composition
q  Decomposition
q  Style
q  Aesthetics

n  Proposes a multiview model of Software
Architecture
q  ‘4+1’ views
q  Underpins the RUP

703

The ‘4+1’ Views Model

n  The original views were:
q  Logical View

n  Object model of the system
q  Process View

n  Concurrency and synchronisation issues
q  Development View

n  Static organisation of the system in its development
environment

q  Physical View (now called Component View or
Implementation View in RUP)
n  Mapping of software to hardware

q  Scenario-based View (the ‘plus one’: Use Case View in the
RUP)
n  Usage scenarios

704

177

Characteristics of the 4+1 Views
Model
n  Krutchen applies Perry and Wolf’s equation to each

model separately
q  Software Architecture = {elements, form, rationale}

n  Each view captured in a blueprint
q  Appropriate notation
q  May include attached architectural style

n  As per Garlan and Wolf

n  Scenarios (use cases) used to drive an iterative,
incremental approach to architecture

705

Krutchen’s Process

n  Small number of scenarios selected for an iteration
q  Based on relative risk, criticality

n  “Strawman” architecture established
q  cf. UP’s “small, skinny system”

n  Scenarios scripted to drive major abstractions
q  Classes, subsystems, collaborations, processes

etc.,
n  Architectural elements mapped on to four

blueprints
n  Architecture then tested, measured, analysed,

adjusted
n  Documentation for each view includes Architectural

Blueprint and Architectural Style Guide

706

Evaluation of ‘4+1’ Views Model and
the RUP
n  Extends the notion of architecture beyond mere structure

q  Includes rationale, aesthetics etc.,
n  Places Software Architecture on the critical path
n  BUT Software Architecture is discovered IN the project

q  CBD, Software Productline architectures, enterprise
architectures etc., require conformity to pre-existing
architectures

n  Unclear whether RUP is ‘heavyweight’ or ‘agile’
q  See O’Callaghan v Jacobson in

ApplicationDevelopment Advisor

707

Summary

n  Processes cannot be divorced from Software
Architecture

n  Processes can be categorised as
q  Heavyweight
q  Agile (or ‘lightweight’)

n  The RUP is based on Krutchen’s 4+1 Views Model
of Software Architecture

n  There is a debate as to whether it is heavyweight or
agile

708

178

Topic 17: Software Architecture
and Reengineering

Legacy Systems

710

Definition:
n  Any information system

that significantly resists
evolution

n  to meet new and
changing business
requirements

Characteristics
n  Large
n  Geriatric
n  Outdated languages
n  Outdated databases
n  Isolated

Software Volume

n  Capers Jones software size estimate:
q  700,000,000,000 lines of code
q  (7 * 109 function points)
q  (1 fp ~ 110 lines of code)

n  Total number of programmers:
q  10,000,000
q  40% new dev. 45% enhancements, 15% repair
q  (2020: 30%, 55%, 15%)

711

Reverse Architecting: Motivation

n  Architecture description lost or outdated
n  Obtain advantages of expl. arch.:

q  Stakeholder communication
q  Explicit design decisions
q  Transferable abstraction

n  Architecture conformance checking
n  Quality attribute analysis

712

179

Software Architecture

Structure(s) of a system which
n  comprise the software components
n  the externally visible properties of those

systems
n  and the relationships among them

713

Architectural Structures

n  Module structure
n  Data model structure
n  Process structure
n  Call structure
n  Type structure
n  GUI flow
n  ...

714

715

The 4 + 1 View Model

Process
view

Physical
view

Development
view

Logical
view

Use case
view

Extract & compare!

Reverse Engineering

n  The process of analysing a subject system
with two goals in mind:
q  to identify the system's components and their

interrelationships; and,
q  to create representations of the system in another

form or at a higher level of abstraction.

716

180

Reengineering

n  The examination and alteration of a subject
system

n  to reconstitute it in a new form
n  and the subsequent implementation of that

new form

Beyond analysis -- actually improve.

717

Reengineering

718

Program Understanding

n  the task of building mental models of an
underlying software system

n  at various abstraction levels, ranging from
q  models of the code itself to
q  ones of the underlying application domain,

n  for software maintenance, evolution, and
reengineering purposes

719

Cognitive Processes

n  Building a mental model
n  Top down / bottom up / opportunistic
n  Generate and validate hypotheses
n  Chunking: create higher structures from

chunks of low-level information
n  Cross referencing: understand relationships

720

181

Supporting
Program Understanding

721

n  Architects build up mental models:
q  various abstractions of software system
q  hierarchies for varying levels of detail
q  graph-like structures for dependencies

n  How can we support this process?
q  infer number of predefined abstractions
q  enrich system’s source code with abstractions
q  let architect explore result

722

Topic 18: Service-Oriented
Architecture (SOA)

722 722

723

contents
n  Software Architecture and SOA
n  Service-oriented architecture (SOA) definition
n  Service-oriented modeling framework (SOMF)
n  Security in SOA
n  The Cloud and SOA

723 724

Software Architecture and SOA

n  Service-oriented architecture is a special kind
of software architecture that has several unique
characteristics.

724 724

182

725

Service-oriented architecture (SOA)
definition

 A service-oriented architecture is essentially a
collection of services. These services
communicate with each other. The
communication can involve either simple data
passing or it could involve two or more services
coordinating some activity. Some means of
connecting services to each other is needed.

725 725 726

Services ,Web Services and SOA

n  Web Services refers to the technologies that allow for
making connections.

n  Services are what you connect together using Web
Services. A service is the endpoint of a connection. Also,
a service has some type of underlying computer system
that supports the connection offered.

n  The combination of services - internal and external to an
organization - make up a service-oriented architecture.

726 726

727

SOA Characteristics

n  discoverable and dynamically bound.
n  Self-contained and modular.
n  interoperability.
n  loosely coupled.
n  network-addressable interface.
n  coarse-grained interfaces.
n  location-transparent.
n  composable.
n  self-healing.

727 727 728

SOA Basics

n  In most cases, an SOA will be implemented using a
variety of standards, the most common being:

n  These latter three standards work together to deliver
messages between services much in the same way as
the post office.

728 728

q HTTP
q  WSDL (Web Services Definition
Language)
q  SOAP (Simple Object Access
Protocol),
q XML (eXtensible Markup Language)

183

729

WSDL ! Entry in an address book
HTTP ! Postal carrier (transportation)
SOAP ! Envelope (encapsulation)

XML ! Letter (message)

729 729 730

SOA Elements

730 730

731

SOA meta-model

731 731 732

Service-oriented modeling framework
(SOMF)

n  SOMF offers a modeling language and a work structure
or "map" depicting the various components that
contribute to a successful service-oriented modeling
approach.

n  The model enables practitioners to craft a project plan
and to identify the milestones of a service-oriented
initiative.

n  SOMF also provides a common modeling notation to
address alignment between business and IT
organizations.

732 732

184

733

Service-Oriented Modeling Framework
(SOMF) Version 2.0

733 733 734

SOMF addresses the following principles:

n  business traceability
n  architectural best-practices traceability
n  technological traceability
n  SOA value proposition
n  software assets reuse
n  SOA integration strategies
n  technological abstraction and generalization
n  architectural components abstraction

734 734

735

Security in SOA

735 735

"The revolutionary idea that defines the boundary between modern
times and the past is the mastery of risk: the notion that the future is
more than a whim of the Gods and that men and women are not
passive before nature. Until human beings discovered a way across
that boundary, the future was a mirror of the past or the murky
domain of oracles and soothsayers who held monopoly over
knowledge of anticipated events..."

- Peter Bernstein, "Against the Gods"

736

Security Services

736 736

Different distributed programming paradigms
introduce different security considerations

185

737

Security Services

n  The primary security functions required by most
systems are:

 • authentication
 • authorization
 • auditing
 • assurance

737 737 738

Security Services

738 738

How security services can be positioned as
intermediaries between service requester and

provider

739

Security-centric Service Models(1)

n  Authentication is concerned with validating the
authenticity of the request and binding the
results to a principle. This is frequently a system-
level service because it deals with the
processing of system policies (such as password
policies) and implementing complex protocols
(like Kerberos). This warrants a separate service
because authentication logic is generally not
valuable (or reusable) when intertwined with
other application logic.

•
739 739 740

Security-centric Service Models(2)

n  Authorization, on some level, is always
enforced locally, close to the thing being
protected. In SOA, this thing is the service
provider. While coarse-grained authorization can
be implemented at a global level, finer grained
authorization requires mapping to the service
and its operations. From a design perspective,
authorization should be viewed at both system
and service levels (the latter always being
enforced locally).

740

186

741

Security-centric Service Models(3)

n  Audit services provide detection and
response features that serve to answers
questions around what digital subjects
performed what actions to what objects.

n  Assurance services essentially exists as a
set of system processes that increase the
assessor's confidence in a given system.

741 742

two major problems:

n  encrypting and decrypting (it's nice and all,
but we still need to move that data around
and use it)

n  access control

742

743

Problem 1：encrypting and decrypting

n  SOA movement has produced useful standards like
WS-Security that help solve the first problem
(moving data around).

n  WS-Security SOAP headers facilitate encrypting
data in the message and because the data is
packaged in XML, other service providers can
decrypt the message.

n  Additionally, WS-Security allows for multiple security
token types, so if your enterprise is using Active
Directory, LDAP, and digital certificates, you can still
mesh security requests together in a consistent
manner.

743 744

Problem 2： access control

n  Access control is comprised of ：

744

Ø authentication (who made this request?)

Ø authorization (what is this request allowed to do?)

Ø auditing (what security decisions were made for what requests?).

187

745

SOA security architects ：how to do

n  Map out a security architecture that looks at the system
from an end to end perspective, and focuses on your
assets (it's the car, not the garage).

n  For each service requester and service provider - and
anything in the middle like proxies - understand the
current state of access control by analyzing
authentication, authorization, and auditing (secure
access to the car).

n  Determine what policy enforcement and policy decision
points exist today and which can be strengthened in the
future (fortify the car to the best of your ability).

745 746

SOA security : Conclusion
n  There is no perfect security solution, there is only the management

of security risk that relies on judgment and prioritization, driven by
assets and values.

n  Security is contextual and has a form factor that must adhere to that
which the supporting mechanisms can protect.

n  Risk is increasingly engendered in data and effective security
mechanisms adhere to data to provide the necessary level of
protection.

n  When SOA security standards are properly leveraged, the potential
is there to create entirely new and robust service-oriented security
architectures.

746

747

Web Oriented Architecture

n  Web Oriented Architecture (WOA) is a style
of software architecture that extends service-
oriented architecture (SOA) to web based
applications, and is sometimes considered to
be a light-weight version of SOA.

n  WOA is also aimed at maximizing the
browser and server interactions by use of
technologies such as REST and POX.

747 748 748

188

749 749

WOA: An organic service fabric

750

What is WOA? The Basic Tenets(1)

n  Information in a WOA is represented in the form of
resources on the network and are accessed and
manipulated via the protocol specified in the URI,
typically HTTP.

n  Every resource on the network can located via a globally
unique address known as a Universal Resource Identifier
or URI complying with RFC 3986.

n  Resources are manipulated by HTTP verbs (GET, PUT,
POST, DELETE) using a technique known as
Representational State Transfer or REST.

n  Manipulation of network resources is performed solely by
components on the network (essentially browsers and
other Web servers).

750

751

What is WOA? The Basic Tenets(2)

n  Access to resources must be layered and not require
more than local knowledge of the network.

n  It is the responsibility of the components to understand
the representations and valid state transitions of the
resources they manipulate.

n  The service contract of WOA resources is implicit; it's the
representation that is received.

n  WOA resources contain embedded URIs that build a
larger network of granular representative state (i.e. order
resources contain URLs to inventory resources).

n  WOA embodies Thomas Erl's essential Principles of
SOA, though in often unexpected ways (such as having
a contract, albeit implicit).

751 752

Topic 19: Security and Trust for
Software Architecture

752 752

189

753

contents
n  What is Security
n  Design Principles for Computer Security
n  Security Architecture Blueprint
n  Security Architecture Lifecycle
n  Architectural Access Control Models
n  Architecture and Trust Management

753 753 754

Security
 “The protection afforded to an automated

information system in order to attain the
applicable objectives of preserving the
integrity, availability and confidentiality
of information system resources (includes
hardware, software, firmware, information/
data, and telecommunications).”

——National Institute of Standards and Technology

754

755

Confidentiality, Integrity, and
Availability

n  Confidentiality
q  Preserving the confidentiality of information means

preventing unauthorized parties from accessing the
information or perhaps even being aware of the
existence of the information. I.e., secrecy.

n  Integrity
q  Maintaining the integrity of information means that

only authorized parties can manipulate the information
and do so only in authorized ways.

n  Availability
q  Resources are available if they are accessible by

authorized parties on all appropriate occasions.

755 756

Design Principles for Computer
Security

n  Least Privilege: give each component only the
privileges it requires

n  Fail-safe Defaults: deny access if explicit permission is
absent

n  Economy of Mechanism: adopt simple security
mechanisms

n  Complete Mediation: ensure every access is permitted
n  Design: do not rely on secrecy for security

756

190

757

Design Principles for Computer
Security

n  Separation of Privilege: introduce multiple parties to
avoid exploitation of privileges

n  Least Common Mechanism: limit critical resource
sharing to only a few mechanisms

n  Psychological Acceptability: make security
mechanisms usable

n  Defense in Depth: have multiple layers of
countermeasures

757 758 758

Security Architecture
Blueprint

759

Stakeholders：：

n  Anyone with a material stake in the systems

development and operations, including business
users, customers, legal team, and so on.

n  The stakeholder’s business and risk goals drive
the overall security architecture.

759 759 760

Risk Management:

n  Risk is comprised of assets, threats,
vulnerabilities, and countermeasures.

n  The risk management process implements risk
assessment to ensure the enterprise’s risk
exposure is in line with risk tolerance goals.

760

191

761

Security policy and standards:

n  organizational policies and standards that govern the
system’s design, deployment, and run time.

n  The security policy describes both what is allowed as
well as not allowed in the system.

n  Security standards should be prescriptive guidance for
people building and operating systems, and should be
backed by reusable services wherever practical.

761 762

Security architecture:

n  unifying framework and reusable services that implement
policy, standards, and risk management decisions.

n  The security architecture is a strategic framework that
allows the development and operations staff to align
efforts, in addition the security architecture can drive
platform improvements which are not possible to make at
a project level.

762

763

Security processes：：

n  Security functions as a collaborative design partner in
the software development lifecycle (SDL), from
requirements, architecture, design, coding, deployment,
and withdrawal from service.

n  Security adds value to the software development
lifecycle through prescriptive and proscriptive guidance
and expertise in building secure software.

n  Security can play a role in all phases of the SDL, each
additional security process improvement must fit with the
overall SDL approach in the enterprise, which vary
widely.

763 764

Security processes ：：
Example roadmap for adding security to the SDL

764

192

765

Security processes ：：
Example roadmap for adding security to the SDL(1)

n  The diagram shows an example approach for
iterating through a number of security artifacts and
evolving the SDL over time

n  The goal is to identify reusable services that, over
time, can speed development of reliable software

n  for example: building reusable attack patterns that
are implemented across a particular set of threats
like a set of web attack patterns that can be used for
security design in any enterprise web application

765 766

Security processes ：：
Example roadmap for adding security to the SDL(2)

n  Identity management deals with the creation,
communication, recognition, and usage of identity in the
enterprise.

n  Threat management: deals with the threats to systems
such as virus, Trojans, worms, malicious hackers, force
majeure, and intentional and unintentional system
misuse by insiders or outsiders.

n  Vulnerability management: the set of processes and
technologies for discovering, reporting, and mitigating
known vulnerabilities.

766

767

Defense in depth：：

n  Defense in depth is predicated on the notion that every
security control is vulnerable somehow, but that if one
component fails another control at a separate layer still
provides security services to mitigate the damage

n  Each level of the defense in depth stack has its own
unique security capabilities and constraints. The core
security services - authentication, authorization, and
auditing apply at all levels of the defense in depth stack

767 768

Defense in depth（（1））

n  Network security: design and operations for security
mechanisms for the network.

n  Host security: is concerned with access control on the
servers and workstations.

n  Application security: deals with two main concerns: 1)
protecting the code and services running on the system；
2) delivering reusable application security services.

n  Data security: deals with securing access to data and
its use, this is a primary concern for the security
architecture and works in concert with other domains.

768

193

769

Metrics：：

n  Security metrics are a basis for assessing the security
posture and trends of the systems.

n  The goal of security metrics is objective measurement
that enables decision support regarding risk
management for the business without requiring the
business to be information security experts to make
informed choices.

n  Audit, assurance services, and risk assessment use
security metrics for ongoing objective analysis.

769 770

Metrics（（1））

n  Risk metrics: measure the overall assets, and their
attendant countermeasures, threats, and vulnerabilities.

n  Enterprise reporting: enterprise view of security and
risk. Enterprise reports show the states and rates of
security, they can show which areas deserve additional
focus and where the security services are increasing or
decreasing the overall risk exposure.

n  Domain specific metrics: domain specific
instrumentation of metrics, for example vulnerabilities not
remediated, provide granular view of security in a
system.

770

771

Assurance：：

n  Assurance is the set of activities that create higher

confidence in the system’s ability tocarry out its design
goals even in the face of malicious abuse.

n  These activities are performed by, or on behalf of, an
enterprise as tests of the security practices. Activities
include penetration testing, code auditing and analysis,
and security specific hardware and software controls.

n  The security processes, defense in depth technologies,
and metrics are all built on sets of assumptions;
assurance activities challenge these assumptions, and
especially the implementations.

771 772

Security Architecture Lifecycle

772 772

194

773

Security Architecture Lifecycle（（1））

n  Architecture Risk Assessment: assesses the business impact
to critical business assets, the probability and impact of security
threats and vulnerabilities.

n  Security Architecture and Design: architecture and design of
security services that enable business risk exposure targets to be
met.

n  Implementation: security processes and services implemented,
operational, and managed.

n  Operations and Monitoring: Ongoing processes, such as
vulnerability management and threat management, that monitor
and manage the operational state as well as the breadth and
depth of systems security.

773 774

Architectural Access Control Models

n  Decide whether access to a protected resource
should be granted or denied

n  Discretionary access control
q  Based on the identity of the requestor, the

resource, and whether the requestor has
permission to access

n  Mandatory access control
q  Policy based

774

775

Role of Trust Management

n  Each entity (peer) must protect itself against
these threats

n  Trust Management can serve as a potential
countermeasure
q  Trust relationships between peers help establish

confidence
n  Two types of decentralized trust management

systems
q  Credential and policy-based
q  Reputation-based

775 776

Architecture and Trust Management
n  Decentralized trust management has received a

lot of attention from researchers [Grandison and
Sloman, 2000]
q  Primary focus has been on developing new models

n  But how does one build a trust-enabled
decentralized application?
q  How do I pick a trust model for a given

application?
q  And, how do I incorporate the trust model within

each entity?

776

195

777

Approach
n  Select a suitable reputation-based trust model

for a given application
n  Describe this trust model precisely
n  Incorporate the model within the structure

(architecture) of an entity
q  Software architectural style for trust management

(PACE)
n  Result – entity architecture consisting of

q  components that encapsulate the trust model
q  additional trust technologies to counter threats

777 778

Key Insights
n  Trust

q  Cannot be isolated to one component
q  Is a dominant concern in decentralized applications and

should be considered early on during application
development

q  Having an explicit architecture is one way to consistently
address the cross-cutting concern of trust

n  Architectural styles
q  Provide a foundation to reason about specific goals
q  Facilitate reuse of design knowledge
q  Allow known benefits to be leveraged and induce desirable

properties

778

779

Design Guidelines: Approach

n  Identify threats of decentralization
n  Use the threats to identify guiding principles

that help defend against the threats
n  Incorporate these principles within an

architectural style focused on decentralized
trust management

779 780

Topic 20 :Web 2.0 and
Software Architecture

780 780

196

781

contents

n  What is Web 2.0?
n  History: From Web 1.0 to 2.0
n  Basic Web 2.0 Reference Architecture
n  Specific Patterns of Web 2.0
n  Future of Web 2.0

781 781 782

What is Web 2.0?

 “Design Patterns and
Business Models for the Next
Generation of Software”

- Tim O’Reilly, 2005

782 782

783

What is Web 2.0?

 “The central principle behind the
success of the giants born in the Web
1.0 era who have survived to lead the
Web 2.0 era appears to be this, that
they have embraced the power of the
web to harness collective intelligence”

 - Tim O’Reilly, 2006

783 783 784

What is Web 2.0?

784 784

“The Semantic Web is not a separate
Web but an extension of the current
one, in which information is given
well-defined meaning, better enabling
computers and people to work in
cooperation”

- Tim Berners-Lee, 2001

197

785

What is Web 2.0?

Both are Ecosystems

Semantic Web: interaction between machines

Social Web: conversations between people

785 785 786 786 786

The Web As Platform

787

History: From Web 1.0 to 2.0

n  The term "Web 2.0" was coined in 1999 by Darcy
DiNucci. In her article, "Fragmented Future"

n  The term did not resurface until 2003
n  In 2004, the term began its rise in popularity when

O'Reilly Media and MediaLive hosted the first Web 2.0
conference

n  O'Reilly's Web 2.0 conferences have been held every
year since 2004, attracting entrepreneurs, large
companies, and technology reporters

n  Since that time, Web 2.0 has found a place in the
lexicon; the Global Language Monitor recently declared it
to be the one-millionth English word

787 787 788

Web 1.0 and Web 2.0 : What’s the difference

 “Web 1.0 was about
connecting computers and making
technology more efficient for
computers. Web 2.0 is about
connecting people and making
technology efficient for people.”

 --Dan Zambonini

788 788

198

789

What’s the difference?

n  Web 2.0
q  the Web was actually

the platform that allowed
people to get things
done.

q  Internet based services
such as social
networking,
communication tools.
Sites that generally
encourage collaboration
and information sharing
among users.

789 789

n  Web 1.0
q  HTML Web pages you

read like a book. Static
web pages, use of
search engines, and
surfing.

q  Web applications,
information served to
users, user interaction
with online information

790 790 790

Web 1.0 vs. Web 2.0

791

Web 1.0 and Web 2.0
 Netscape & Google

n  Netscape framed "the web as platform" in terms of the old software
paradigm: their flagship product was the web browser, a desktop
application, and their strategy was to use their dominance in the
browser market to establish a market for high-priced server
products. In short, Netscape focused on creating software, updating
it on occasion, and distributing it to the end users.

n  Google, a company which did not at the time focus on producing
software, such as a browser, but instead focused on providing a
service based on data. The data being the links Web page authors
make between sites. Google exploits this user-generated content to
offer Web search based on reputation through its "page rank"
algorithm. Unlike software, which undergoes scheduled releases,
such services are constantly updated, a process called "the
perpetual beta".

791 791 792

Basic Web 2.0 Reference Architecture
diagram

792 792

199

793

Basic Web 2.0 Reference Architecture
components（1）

n  Resource tier
q  capabilities or backend systems that can support services that will be

consumed over the Internet
q  data or processing needed for creating a rich user experience
q  typically includes files; databases; enterprise resource planning (ERP)

and customer relationship management (CRM) systems; directories;
and other common applications

n  Service tier
q  connects to the resource tier and packages as a service, giving the

service provider control over what goes in and out
q  Within enterprises, the classic examples of this functionality are J2EE application

servers deploying SOAP or EJB endpoints

793 793 794

Basic Web 2.0 Reference Architecture
components（2）

n  Connectivity
q  means of reaching a service
q  must be visible to and reachable by the service consumer
q  Connectivity is largely handled using standards and protocols such as

XML over HTTP

n  Client tier
q  helps users to consume services and displays graphical views of

service calls to users
q  Examples of client-side implementations include web browsers, Adobe

Flash Player, Microsoft Silverlight, Acrobat, iTunes

794 794

795 795 795

Detailed reference architecture for Web 2.0 application architects and developers

796

Basic Web 2.0 Reference Architecture
 ——The Resource Tier

796 796

Detail view of the resource tier

200

797

Basic Web 2.0 Reference Architecture
 ——The Resource Tier （（1））

n  EIS：： Enterprise Information System (EIS) is an abstract moniker
for a component common in most IT systems.

n  Databases ：：Databases are typically used to persist data in a
centralized repository designed in compliance with a relational
model.

n  Directories：： Directories are lookup mechanisms that persist and
maintain records containing information about users.

n  ECM repository ：：Enterprise content management (ECM)
repositories are specialized types of EIS and database systems.

n  Message queues：： Message queues are ordered lists of
messages for inter-component communications within many
enterprises.

n  Legacy systems ：：The last component is a catchall generally used
to denote anything that has existed through one or more IT
revolutions.

797 797 798

Basic Web 2.0 Reference Architecture
 ——The Service Tier

798 798

Detail view of the service tier

799

n  Service invocation layer：： The service invocation layer is where
listeners are plugged in to capture events that may trigger services
to perform certain actions

n  Service container ：Once a service is invoked, a container
instance is spawned to carry out the service invocation request until
it is either successfully concluded or hits a fatal error.

n  Business rules and workflow：： All service invocation requests
are subject to internal workflow constraints and business rules.

n  Registry/repository：： A registry is a central component that keeps
track of services, perhaps even in multiple versions.

n  Service provider interface (SPI) ：：Since the service tier makes
existing capabilities available to be consumed as services, an SPI is
required to connect to the resource tier.

Basic Web 2.0 Reference Architecture
 ——The Service Tier（（1））

799 799 800

800 800

Detail view of the client application tier

Basic Web 2.0 Reference Architecture
 ——The Client Application Tier

201

801

n  Controller：： The controller contains the master logic that runs all aspects
of the client tier

n  Data/state management：： Any data used or mutated by the client tier
may need to be held in multiple states to allow rollback to a previous state
or for other auditing purposes.

n  Security container/model ：：A security model expresses how
components are constrained to prevent malicious code from performing
harmful actions on the client tier.

n  Virtual machines：： Virtual machines (VMs) are plug-ins that can emulate
a specific runtime environment for various client-side technologies.

n  Rendering and media ：：Management of the media and rendering
processes is required to present a graphical interface to users (assuming
they are humans).

n  Communications：：With every client-tier application, communication
services are required.

801 801

Basic Web 2.0 Reference Architecture
 ——The Client Application Tier（（1））

802

Architectural Models That Span Tiers

n  The SOA and MVC architectural models are key pillars of Web 2.0.
n  The services tier and the client application tier must be built using similar

design principles so that they can provide a platform for interaction.
n  Resource tier and client application tier designers tend to abide by the core

tenets and axioms of the Reference Model for SOA and apply application
design principles such as MVC.

n  The MVC paradigm encourages design of applications in such a way that data
sets can be repurposed for multiple views or targets on the edge, as it
separates the core data from other bytes concerned with logic or views.

n  Model-View-Controller (MVC)
n  Service-Oriented Architecture (SOA)

802 802

803

Topic 21: Cloud Computing and

Software Architecture

803 804

Definition of Cloud Computing

 “Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of
configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider interaction. This
cloud model promotes availability and is composed of
five essential characteristics, three service models,
and four deployment models.”

——National Institute of Standards and Technology, Information

Technology Laboratory

804

202

805 805 806

Definition of Cloud Computing
——Essential Characteristics(1)

n  On-demand self-service
 A consumer can unilaterally provision computing capabilities, such as

server time and network storage, as needed automatically without requiring
human interaction with each service’s provider.

n  Broad network access
 Capabilities are available over the network and accessed through standard

mechanisms that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).

n  Resource pooling
 The provider’s computing resources are pooled to serve multiple consumers

using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand.
There is a sense of location independence in that the customer generally
has no control or knowledge over the exact location of the provided
resources but may be able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter).

806

807

Definition of Cloud Computing
——Essential Characteristics(1)

n  Rapid elasticity.

 Capabilities can be rapidly and elastically provisioned, in some cases

automatically, to quickly scale out and rapidly released to quickly scale in.
To the consumer, the capabilities available for provisioning often appear to
be unlimited and can be purchased in any quantity at any time.

n  Measured Service
 Cloud systems automatically control and optimize resource use by

leveraging a metering capability at some level of abstraction appropriate to
the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported
providing transparency for both the provider and consumer of the utilized
service.

807 808

Definition of Cloud Computing
—— Service Models

n  Cloud Software as a Service (SaaS).
q  The capability provided to the consumer is to use the provider’s applications running on a

cloud infrastructure.
q  applications are accessible from various client devices through a thin client interface
q  The consumer does not manage or control the underlying cloud infrastructure

n  Cloud Platform as a Service (PaaS).
q  The capability provided to the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using programming languages and
tools supported by the provider.

q  The consumer does not manage or control the underlying cloud infrastructure

n  Cloud Infrastructure as a Service (IaaS).
q  The capability provided to the consumer is to provision processing, storage, networks, and

other fundamental computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications.

q  The consumer does not manage or control the underlying cloud infrastructure but has
control over operating systems, storage, deployed applications, and possibly limited control
of select networking components (e.g., host firewalls).

808

203

809

Definition of Cloud Computing
—— Deployment Models

n  Private cloud
 The cloud infrastructure is operated solely for an organization. It may be

managed by the organization or a third party and may exist on premise or
off premise.

n  Community cloud
 The cloud infrastructure is shared by several organizations and supports a

specific community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on premise or off
premise.

n  Public cloud
 The cloud infrastructure is made available to the general public or a large

industry group and is owned by an organization selling cloud services.
n  Hybrid cloud
 The cloud infrastructure is a composition of two or more clouds (private,

community, or public) that remain unique entities but are bound together by
standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between clouds).

809 810 810

811 811 812 812 812

204

813

Organizing the Clouds

813

Infrastructure-as-a-Service

S
ecurity-as-a-S

ervice

Storage-as-a-Service

Integration-as-a-S
ervice

Database-as-a-Service

Information-as-a-Service

Process-as-a-Service P
latform

-as-a-S
ervice

Application-as-a-Service

Management/Governance-as-a-Service

Testing-as-a-Service

814

Cloud Computing’s Brother Buzzwords

n  Utility computing

n  Distributed computing

n  Grid computing

814

815

Comparison of Utility Computing and
Cloud Computing

n  Utility computing is a business model, it is a
type of price model to deliver application
infrastructure resource.

815

Monitor
Meter
Billing
Pay

Utility computing

Cloud computing

816

Comparison of Distributed Computing and
Cloud Computing

n  Distributed computing deals with hardware and software systems
containing more than one processing element or storage
element, concurrent processes, or multiple programs, running
under a loosely or tightly controlled regime.

n  In distributed computing， a program is split up into parts that
run simultaneously on multiple computers communicating over a
network.

816

205

817

Comparison of Grid computing and Cloud
Computing

n  Often found in scientific environments.
n  Motivation: high performance, improving resource utilization.
n  Aims to create illusion of a simple, yet powerful computer out of

a large number of heterogeneous systems.
n  Jobs are submitted and distributed on nodes in the grid.

817 818 818

819 819 820 820

206

821 821 822 822

823 823 824 824

207

825 825 826 826

827

Users and Providers of Cloud Computing

827 828

Why cloud computing now?

n  Reasons for emergence of Cloud Computing:

q  Construction and operation of large-scale
datacenters.

q  Additional technology trends.
q  New business models.

828

208

829

New Application Opportunities

n  Mobile interactive applications.

n  Parallel batch processing.

n  The rise of analytics.

n  Extension of compute-intensive desktop
applications.

829 830

Obstacles and Opportunities

830

831

Some Observations

n  The long dreamed vision of computing as a utility is finally
emerging. The elasticity of a utility matches the need of
businesses providing services directly to customers over
the Internet.

n  From the cloud provider’s view, the construction of large
datacenters at low cost uncovered the possibility of selling
resources on a pay-as-you-go model below the costs of
medium-sized datacenters.

n  From the cloud user’s view, it would be as startling for a
new software startup to build its own datacenter. Also many
other organizations take advantage of the elasticity of Cloud
Computing such as newspapers like Washington Post,
movie companies like Pixar.

831 832

Relationships：SOA and Cloud Computing

832

832

SOA

Cloud
Computing

Enterprise
Architecture

209

833

SOA and Cloud Computing

n  One can consider cloud
computing the extension of
SOA out to cloud-delivered
resources, such as storage-as-
a-service, data-as-a-service,
platform-as-a-service -- you get
the idea.

n  The trick is to determine which
services, information, and
processes are good candidates
to reside in the clouds, as well
as which cloud services should
be abstracted within the existing
or emerging SOA.

833

833

Cloud	
 Compu)ng	

Services	
 On-­‐Demand	

Database	
 On-­‐Demand	

Applica)ons	
 On-­‐Demand	

Pla;orm	
 On-­‐Demand	

	

SOA	

Shared	
 Services	

Shared	
 Informa)on	

Shared	
 Processes	

Agility	

Integra)on	

Governance	

	

834

The Basic Idea

834

834

New
Accounts

Finance/
Operations

Commission
Calculation

Sales

Data
Cleaning

Sales Order
Update

SOA Cloud
Resources

835

IT is Skeptical

n  Enterprise IT is
understandably skittish about
cloud computing.

n  However, many of the cloud
computing resources out
there will actually provide
better service than on-
premise.

n  Security and performance are
still issues.

835

835 836

However, Not So Fast

n  Not all computing
resources should
exist in the clouds.

n  Cloud computing is
not always cost
effective.

n  Do your homework
before making the
move.

836

836

210

837

When Cloud Computing may be a Fit

n  When the processes, applications, and data are
largely independent.

n  When the points of integration are well defined.
n  When a lower level of security will work just fine.
n  When the core internal enterprise architecture is

healthy.
n  When the Web is the desired platform.
n  When cost is an issue.
n  When the applications are new.

837

837 838

When Cloud Computing may not a Fit

n  When the processes, applications, and data are
largely coupled.

n  When the points of integration are not well defined.
n  When a high level of security is required.
n  When the core internal enterprise architecture needs

work.
n  When the application requires a native interface.
n  When cost is an issue.
n  When the application is legacy.

838

838

839

Start with the Architecture

Understand:

n  Business drivers
n  Information under

management
n  Existing services under

management
n  Core business processes

839 • 839 840

Getting Ready

n  So, how do you prepare yourself? I have a few suggestions:
q  First, accept the notion that it's okay to leverage services

that are hosted on the Internet as part of your SOA. Normal
security management needs to apply, of course.

q  Second, create a strategy for the consumption and
management of cloud services, including how you'll deal with
semantic management, security, transactions, etc.

q  Finally, create a proof of concept now. This does a few things
including getting you through the initial learning process and
providing proof points as to the feasibility of leveraging cloud
computing resources.

840

840

211

841

Stepping to the Clouds

1. Access the business.
2. Access the culture.
3. Access the value.
4. Understand your data.
5. Understand your services.
6. Understand your processes.
7. Understand the cloud resources.
8. Identify candidate data.
9. Identify candidate services.

841

841

10. Identify candidate processes.
11. Create a governance strategy.
12. Create a security strategy.
13. Bind candidate services to data

and processes.
14. Relocate services, processes,

and information.
15. Implement security.
16. Implement governance.
17. Implement operations.

Topic 22: Software Architecture
and Concurrency

Why is concurrency so important?

8
4
3

Traditionally, specialized area of interest to a few experts:
Ø Operating systems
Ø Networking
Ø Databases

Multicore and the Internet make it relevant to every
programmer!

What they say about concurrency

8
4
4

ØIntel Corporation: Multi-core processing is taking the
industry on a fast-moving and exciting ride into
profoundly new territory. The defining paradigm in
computing performance has shifted inexorably from raw
clock speed to parallel operations and energy efficiency.

ØRick Rashid, head of Microsoft Research: Multicore
processors represent one of the largest technology
transitions in the computing industry today, with deep
implications for how we develop software.

ØBill Gates: “Multicore: This is the one which will have
the biggest impact on us. We have never had a problem
to solve like this. A breakthrough is needed in how
applications are done on multicore devices.

212

Evolution of hardware (source: Intel)

845

Multiprocessing
• Until a few years ago: systems with one processing unit
were standard
• Today: most end-user systems have multiple processing
units in the form of multi-core processors

• Multiprocessing: the use of more than one processing unit
in a system
• Execution of processes is said to be parallel, as they are
running at the same time

Process 1 CPU 1

Process 2 CPU 2
I nstructions

Multitasking & multithreading
Even on systems with a single processing unit programs
may appear to run in parallel:
Ø Multitasking*
Ø Multithreading (within a process, see in a few slides)

Instructions

Multi-tasked execution of processes is said to be
interleaved, as all are in progress, but only one is
running at a time. (Closely related concept:
coroutines.)

*This is common terminology, but “multiprocessing”
was also used previously as a synonym for “multitasking”

Process 1 Process 2

CPU

Processes
• A (sequential) program is a set of instructions
• A process is an instance of a program that is being
executed

213

Concurrency
• Both multiprocessing and multithreading are examples of
concurrent computation
• The execution of processes or threads is said to be
concurrent if it is either parallel or interleaved

1
0

Computation
To perform a computation is

Ø To apply certain actions
Ø To certain objects
Ø Using certain processors

Processor

Actions Objects

Operating system processes
• How are processes implemented in an operating system?
• Structure of a typical process:

•  Process identifie r: unique ID of a process.
•  Process state: current activity of a process.
•  Process context: program counter, register values
•  Memory: program text, global data, stack, and heap.

Process ID
Heap Stack

Program counter

Register values

Code Global data

The scheduler
A system program called the scheduler controls which
processes are running; it sets the process states:

Ø  Running: instructions are being executed.
Ø  Blocked: currently waiting for an event.
Ø  Ready: ready to be executed, but has not been

assigned a processor yet.

blocked

r unning r eady

Context switch

214

The context switch
• The swapping of processes on a processing unit by the
scheduler is called a contex t switch

• Scheduler actions when switching processes P1 and P2:
Ø  P1.set_state (ready)
Ø  Save register values as P1's context in memory
Ø  Use context of P2 to set register values
Ø  P2.set_state (running)

CP
U

Register s

P1
Context

P2
Context

Concurrency within programs
• We also want to use concurrency within programs

task 1
task 2

task 1

task 2

Sequential execution:
CPU 1 CPU 2

m

m + n

n

Concurrent execution:
CPU 1 CPU 2

m
n

max(m, n)

compute
do
t1.do_task1
t2.do_task2
end

Threads (“lightweight processes”)
Make programs concurrent by associating them with
threads
A thread is a part of an operating system process
Private to each thread:
Ø Thread identifier
Ø Thread state
Ø Thread context
Ø Memory: only stack
Shared with other threads:
Ø Program text
Ø Global data
Ø Heap

Process ID
Code Global data

Register
values

Thread ID1 Thread ID3 Thread ID 2

Register
values

Register
values

Stack Stack Stack

Heap

Progra
m counter

Progra
m counter

Progra
m counter

Processes vs threads
Process:
Ø Has its own (virtual) memory space (in O-O programming, its own objects)
Ø Sharing of data (objects) with another process:

§  Is explicit (good for reliability, security, readability)
§  Is heavy (bad for ease of programming)

Ø Switching to another process: expensive (needs to back up one full context and
restore another
Thread:
Ø Shares memory with other threads
Ø Sharing of data is straightforward

§  Simple go program (good)
§  Risks of confusion and errors: data races (bad)

Ø Switching to another thread: cheap

215

Concurrent programs in Java

• Implement the method run()

Associating a computation with a thread:

• Write a class that inherits from the class Thread (or
implements the interface Runnable)

class Thread1 extends Thread {
public void run() {

// implement task1 here
}

}
class Thread2 extends Thread {

public void run() {
// implement task2 here

}
}

void compute() {
Thread1 t1 = new Thread1();
Thread2 t2 = new Thread2();
t1.start();
t2.start();
}

Joining threads

to wait until t is finished

Often the final results of thread executions need to be
combined:

To wait for both threads to be finished, we join them:

The join() method, invoked on a thread t , causes the caller

return t1.getResult() + t2.getResult();

t1.start();
t2.start();
t1.join();
t2.join();
return t1.getResult() + t2.getResult();

Race conditions (1)

Consider a counter class: Assume two threads:

Thread 1:

Thread 2:

class Counter {
private int value = 0;

public int getValue() {
return value;
}

public void setValue(int someValue)
{ value = someValue;
}

public void increment() {
value++;
}
}

x.setValue(0);
x.increment();
int i = x.getValue();

x.setValue(2);

Race conditions (2)

8
60

• Because of the interleaving of threads, various results can
be obtained:

Such dependence of the result on nondeterministic
interleaving is a race condition (or data race)
Such errors can stay hidden for a long time and are difficult
to find by testing

x . s e t V a l u e (2)
x . s e t V a l u e (0)
x.increment()
int i = x.getValue()

x . s e t V a l u e (0)
x . s e t V a l u e (2)
x.increment()
int i = x.getValue()

x . s e t V a l u e (0)
x . i n c r e m e n t ()
x.setValue(2)
int i = x.getValue()

x.setValue(0)
x.increment()
int i = x.getValue()
x.setValue(2)

i == 1
x.value == ?

i == 3
x.value == ?

i == 2
x.value == ?

i == 1
x.value == ?

216

Race conditions (2)

8
61

• Because of the interleaving of threads, various results can
be obtained:

Such dependence of the result on nondeterministic
interleaving is a race condition (or data race)
Such errors can stay hidden for a long time and are difficult
to find by testing

x . s e t V a l u e (2)
x . s e t V a l u e (0)
x.increment()
int i = x.getValue()

x . s e t V a l u e (0)
x . s e t V a l u e (2)
x.increment()
int i = x.getValue()

x . s e t V a l u e (0)
x . i n c r e m e n t ()
x.setValue(2)
int i = x.getValue()

x.setValue(0)
x.increment()
int i = x.getValue()
x.setValue(2)

i == 1
x.value == 1

i == 3
x.value == 3

i == 2
x.value == 2

i == 1
x.value == 2

Synchronization
To avoid data races, threads (or processes) must
synchronize with each other, i.e. communicate to agree on
the appropriate sequence of actions

How to communicate:
Ø By reading and writing to shared sections of memory
(shared memory synchronization)
In the example, threads should agree that at any one
time at most one of them can access the resource

Ø By explicit exchange of information (message passing
synchronization)

Mutual exclusion

n  To identify the program parts that need
attention, we introduce the notion of a critical
section : a part of a program that accesses a
shared resource, and should normally be
executed by at most one thread at a time

Mutual exclusion (or “mutex”) is a form of synchronization
that avoids the simultaneous use of a shared resource

Mutual exclusion in Java
• Each object in Java has a mutex lock (can be held only by
one thread at a time!) that can be acquired and released
within synchronized blocks:
• Object lock = new Object();

synchronized (lock) {
// critical section
}
• The following are equivalent:
synchronized type m(args) {

// body

}

type m(args) {
synchronized (this) {

// body
}

}

217

Example: mutual exclusion
To avoid data races in the example, we enclose instructions
to be executed atomically in synchronized blocks
protected with the same lock objects

3
0

synchronized (lock)
{ x.setValue(0);
x.increment();

int i = x.getValue();
}

synchronized (lock) {
x.setValue(2);

}

The producer-consumer problem
Consider two types of looping processes:
Ø Producer: At each loop iteration, produces a data item
for consumption by a consumer
Ø Consumer: At each loop iteration, consumes a data
item produced by a producer

Producers and consumers communicate via a shared buffer
(a generalized notion of bounded queue)

Producers append data items to the back of the queue and
consumers remove data items from the front

Condition synchronization
The producer-consumer problem requires that processes
access the buffer properly:
Ø Consumers must wait if the buffer is empty
Ø Producers must wait if the buffer is full

Condition synchronization is a form of synchronization where
processes are delayed until a condition holds
In producer-consumer we use two forms of synchronization:
Ø Mutual exclusion: to prevent races on the buffer
Ø Condition synchronization: to prevent improper access to
the buffer

Condition synchronization in Java (2)
• The following methods can be called on a synchronized
object (i.e. only within a synchronized block, on the lock
object):

Ø wait(): block the current thread and release the lock
until some thread does a notify() or notifyAll()

Ø  notify(): resume one blocked thread (chosen
nondeterministically), set its state to "ready"

Ø  notifyAll(): resume all blocked threads

• No guarantee that the notification mechanism is fair

218

Producer-Consumer problem: Consumer code

8
69

public void consume() throws InterruptedException {
int value;
synchronized (buffer) {
while (buffer.size() == 0) { buffer.wait();
}
value = buffer.get();
}
}

Consumer blocks if buffer.size() == 0 is true (waiting for a
notify() from the producer)

Producer-Consumer problem:
Producer code

8
70

public void produce() {
int value = random.produceValue();
synchronized (buffer)
{ buffer.put(value); buffer.notify();
}
}

Producer notifies consumer that the condition
buffer.size() == 0 is no longer true

The problem of deadlock
The ability to hold resources exclusively is central to
providing process synchronization for resource access

Unfortunately, it brings about other problems!

A deadlock is the situation where a group of processes
blocks forever because each of the processes is waiting
for resources which are held by another process in the
group

Deadlock example in Java

8
72

Consider the class ... and this code being executed:
public class C extends Thread {
private Object a;
private Object b;

public C(Object x, Object y) { a =
x;
b = y;
}
public void run() {
synchronized (a) {
synchronized (b) {

...
}
}
}}

C t1 = new C(a1, b1); C
t2 = new C(b1, a1);
t1.start();
t2.start();

219

Dining philosophers

873

Are deadlock & data races of the same
kind?

8
74

No

Two kinds of concurrency issues (Lamport):

Ø  Safety: no bad thing will happen

Ø  Liveness: some good thing will happen

Dining philosophers

8
75

class PHILOSOPHER inherit
PROCESS

rename
setup as getup
redefine step end

feature {BUTLER}
step

do
think ;

end
eat (lef t, right)

eat (l, r : separate FORK)
-- Eat, having grabbed l and r .

do … end
end

Producer-Consumer problem:
Producer code

8
76

• Very easy to provide a solution for bounded buffers
• No need for notification, the SCOOP scheduler ensures
that preconditions are automatically reevaluated at a later
time

put (b: separate BUFFER [T]; v: T)
require

not b.is_full
local

value: INTEGER
do

b.put (v)
end

220

Contracts

put (buf : separate QUEUE [INTEGER] ; v : INTEGER)
-- Store v into buffer.

require
not buf.is_full
v > 0

do
buf.put (v)

ensure
not buf.is_empty

end

...
put (my_buffer, 10)

Precondition becomes
wait condition

8
77

For more

8
78

Several concurrency courses in the ETH curriculum,
including our (Bertrand Meyer, Sebastian Nanz)
“Concepts of Concurrent Computation” (Spring
semester)

Good textbooks:

Kramer Herlihy

Topic 23: Visualising Software
Architectures

Objectives
n  Concepts

q  What is visualization?
q  Differences between modeling and visualization
q  What kinds of visualizations do we use?
q  Visualizations and views
q  How can we characterize and evaluate visualizations?

n  Examples
q  Concrete examples of a diverse array of visualizations

n  Constructing visualizations
q  Guidelines for constructing new visualizations
q  Pitfalls to avoid when constructing new visualizations
q  Coordinating visualizations

880

221

Objectives

n  Concepts
q  What is visualization?
q  Differences between modeling and visualization
q  What kinds of visualizations do we use?
q  Visualizations and views
q  How can we characterize and evaluate visualizations?

n  Examples
q  Concrete examples of a diverse array of visualizations

n  Constructing visualizations
q  Guidelines for constructing new visualizations
q  Pitfalls to avoid when constructing new visualizations
q  Coordinating visualizations

881

What is Architectural Visualization?

n  Recall that we have characterized architecture as the set of
principal design decisions made about a system

n  Recall also that models are artifacts that capture some or all
of the design decisions that comprise an architecture

n  An architectural visualization defines how architectural
models are depicted, and how stakeholders interact with
those depictions
q  Two key aspects here:

n  Depiction is a picture or other visual representation of
design decisions

n  Interaction mechanisms allow stakeholders to interact
with design decisions in terms of the depiction

882

Models vs. Visualizations

n  It is easy to confuse models and visualizations
because they are very closely related

n  In the previous lectures, we have not drawn out
this distinction, but now we make it explicit

n  A model is just abstract information – a set of
design decisions

n  Visualizations give those design decisions
form: they let us depict those design decisions
and interact with them in different ways
q  Because of the interaction aspect, visualizations are

often active – they are both pictures AND tools
883

Models vs. Visualizations

884

Model

DD
DD

DD DD

DD

<?xml version=“1.0”>
<model>
 <decision num=“1”…/
>
 <decision num=“2”…/
>
</model>

Our first decision is
that the system will
have two components,
C1 and C2...

C1

C2

XML-based visualization

Natural language visualization

Box-and-arrow
visualization

222

Canonical Visualizations

n  Each modeling notation is associated with one or more
canonical visualizations
q  This makes it easy to think of a notation and a visualization

as the same thing, even though they are not
n  Some notations are canonically textual

q  Natural language, XML-based ADLs
n  …or graphical

q  PowerPoint-style
n  …or a little of both

q  UML
n  …or have multiple canonical visualizations

q  Darwin

885

Another Way to Think About It

n  We may ask “isn’t the canonical
visualization the same as the notation since
that is how the information is fundamentally
organized?”

n  Perhaps, but consider a piece of software
that edits an architectural model

886

C1

C2

Our first decision is
that the system will
have two components, C1
and C2...

Our first decision is

that the system will

Different Relationships

887

Model Viz

One (canonical) visualization
(common)

Model

Viz

Viz

Viz

Many visualizations for one
model (common)

Model

Model Model

Viz

One visualization bringing together
many models (uncommon)

Kinds of Visualizations: Textual
Visualizations

n  Depict architectures through ordinary text
files
q  Generally conform to some syntactic format, like

programs conform to a language
q  May be natural language, in which case the format

is defined by the spelling and grammar rules of
the language

q  Decorative options
n  Fonts, colors, bold/italics
n  Tables, bulleted lists/outlines

888

223

Textual Visualizations

889

<instance:xArch xsi:type=”instance:XArch”>
 <types:archStructure xsi:type=”types:ArchStructure”
 types:id=”ClientArch”>
 <types:description xsi:type=”instance:Description”>
 Client Architecture
 </types:description>
 <types:component xsi:type=”types:Component”
 types:id=”WebBrowser”>
 <types:description xsi:type=”instance:Description”>
 Web Browser
 </types:description>
 <types:interface xsi:type=”types:Interface”
 types:id=”WebBrowserInterface”>
 <types:description xsi:type=”instance:Description”>
 Web Browser Interface
 </types:description>
 <types:direction xsi:type=”instance:Direction”>
 inout
 </types:direction>
 </types:interface>
 </types:component>
 </types:archStructure>
</instance:xArch>

XML visualization

Textual Visualizations (cont’d)

890

<instance:xArch xsi:type=”instance:XArch”>
 <types:archStructure xsi:type=”types:ArchStructure”
 types:id=”ClientArch”>
 <types:description xsi:type=”instance:Description”>
 Client Architecture
 </types:description>
 <types:component xsi:type=”types:Component”
 types:id=”WebBrowser”>
 <types:description xsi:type=”instance:Description”>
 Web Browser
 </types:description>
 <types:interface xsi:type=”types:Interface”
 types:id=”WebBrowserInterface”>
 <types:description xsi:type=”instance:Description”>
 Web Browser Interface
 </types:description>
 <types:direction xsi:type=”instance:Direction”>
 inout
 </types:direction>
 </types:interface>
 </types:component>
 </types:archStructure>
</instance:xArch>

xArch{
 archStructure{
 id = “ClientArch”
 description = “Client Architecture”
 component{
 id = “WebBrowser”
 description = “Web Browser”
 interface{
 id = “WebBrowserInterface”
 description = “Web Browser Interface”
 direction = “inout”
 }
 }
 }
}

XML visualization

Compact visualization

Textual Visualizations: Interaction

n  Generally through an ordinary text editor or
word processor

n  Some advanced mechanisms available
q  Syntax highlighting
q  Static checking
q  Autocomplete
q  Structural folding

891

Textual Visualizations
n  Advantages

q  Depict entire architecture in a single file
q  Good for linear or hierarchical structures
q  Hundreds of available editors
q  Substantial tool support if syntax is rigorous

(e.g., defined in something like BNF)
n  Disadvantages

q  Can be overwhelming
q  Bad for graphlike organizations of information
q  Difficult to reorganize information meaningfully
q  Learning curve for syntax/semantics

892

224

Kinds of Visualizations: Graphical
Visualizations

n  Depict architectures (primarily) as graphical
symbols
q  Boxes, shapes, pictures, clip-art
q  Lines, arrows, other connectors
q  Photographic images
q  Regions, shading
q  2D or 3D

n  Generally conform to a symbolic syntax
q  But may also be ‘free-form’ and stylistic

893

Graphical Visualizations

894

Abstract, stylized
visualization

Graphical Visualizations

895

Abstract, stylized
visualization

More rigorous deployment
visualization

Graphical Visualizations: Interaction

n  Generally graphical editors with point-and-click interfaces
q  Employ metaphors like scrolling, zooming, ‘drill-down’

n  Editors have varying levels of awareness for different target
notations
q  For example, you can develop UML models in PowerPoint (or

Photoshop), but the tools won’t help much
n  More exotic editors and interaction mechanisms exist in

research
q  3D editors
q  “Sketching-based” editors

896

225

Graphical Visualizations

n  Advantages
q  Symbols, colors, and visual decorations more

easily parsed by humans than structured text
q  Handle non-hierarchical relationships well
q  Diverse spatial interaction metaphors

(scrolling, zooming) allow intuitive navigation
n  Disadvantages

q  Cost of building and maintaining tool support
n  Difficult to incorporate new semantics into existing

tools
q  Do not scale as well as text to very large

models 897

Hybrid Visualizations

n  Many visualizations are text-only
n  Few graphical notations are purely symbolic

q  Text labels, at a minimum
q  Annotations are generally textual as well

n  Some notations incorporate substantial parts
that are mostly graphical alongside
substantial parts that are mostly or wholly
textual

898

Hybrid Visualizations (cont’d)

899

context UserInterface
inv: new_burn_rate >= 0

Architectural constraints
expressed in OCL

Primarily graphical
UML class diagram

Views,
Viewpoints, &
Visualizations

900

n  Recall that a view
is a subset of the
design decisions
in an architecture

n  And a viewpoint is
the perspective from
which a view is
taken (i.e., the
filter that selects
the subset)

n  Visualizations are
associated
with viewpoints

226

Effect Visualizations

n  Not all visualizations used in architecture-centric development depict
design decisions directly

n  Some depict the results or effects of design decisions
q  We call these ‘effect visualizations’

n  May be textual, graphical, hybrid, etc.

901

Evaluating Visualizations

n  Scope and Purpose
q  What is the visualization for? What can it

visualize?
n  Basic Type

q  Textual? Graphical? Hybrid? Effect?
n  Depiction

q  What depiction mechanisms and metaphors are
primarily employed by the visualization?

n  Interaction
q  What interaction mechanisms and metaphors are

primarily employed by the visualization?
902

Evaluating Visualizations (cont’d)
n  Fidelity

q  How well/completely does the visualization
reflect the information in the underlying model?

q  Consistency should be a minimum
requirement, but details are often left out

n  Consistency
q  How well does the visualization use similar

representations for similar concepts?
n  Comprehensibility

q  How easy is it for stakeholders to understand
and use a visualization
n  Note: this is a function of both the visualization and

the stakeholders 903

Evaluating Visualizations (cont’d)

n  Dynamism
q  How well does the visualization support models that change

over time (dynamic models)?
n  View Coordination

q  How well the visualization is connected to and kept
consistent with other visualizations

n  Aesthetics
q  How pleasing is the visualization (look and feel) to its users?

n  A very subjective judgment

n  Extensibility
q  How easy is it to add new capabilities to a visualization?

904

227

Objectives

n  Concepts
q  What is visualization?
q  Differences between modeling and visualization
q  What kinds of visualizations do we use?
q  Visualizations and views
q  How can we characterize and evaluate visualizations?

n  Examples
q  Concrete examples of a diverse array of visualizations

n  Constructing visualizations
q  Guidelines for constructing new visualizations
q  Pitfalls to avoid when constructing new visualizations
q  Coordinating visualizations

905

Text Visualizations

n  Text visualizations are generally provided
through text editors

n  Examples:
q  Simple: Windows Notepad, SimpleText, pico, joe
q  For experts: vi, emacs
q  With underlying language support: Eclipse,

UltraEdit, many HTML editors
q  Free-form text documents: Microsoft Word, other

word processors

906

Text Visualizations (cont’d)

n  Advantages
q  Provide a uniform way of working with many

different underlying notations
q  Wide range of editors available to suit any need
q  Many incorporate advanced ‘content assist’

capabilities
q  Many text editors can be extended to handle new

languages or integrate new tools easily
n  Disadvantages

q  Increasing complexity as models get bigger
q  Do not handle graph structures and complex

interrlationships well
907

Advanced Interaction Mechanisms

908

228

Text Visualizations: Evaluation

n  Consistency
q  Generally good; depends on

underlying notation
n  Comprehensibility

q  Drops with increasing complexity
n  Dynamism

q  Rare, but depends on editor
n  View coordination

q  Depends on editor
n  Aesthetics

q  Varies; can be overwhelming or
elegant and structured

n  Extensibility

q  Many extensible editors

n  Scope/Purpose
q  Visualizing design decisions or

effects as (structured) text
n  Basic Type

q  Textual
n  Depiction

q  Ordered lines of characters
possibly grouped into tokens

n  Interaction
q  Basic: insert, delete, copy,

paste
q  Advanced: coloring, code

folding, etc.
n  Fidelity

q  Generally canonical

909

General Graphical Visualizations
n  E.g., PowerPoint, OmniGraffle, etc.
n  Provide point-and-click manipulation of graphical

symbols, interconnections, and text blocks
n  Advantages

q  Friendly UI can create nice-looking depictions
q  Nothing hidden; no information difference between model

and depiction
n  Disadvantages

q  No underlying semantics; difficult to add them
n  Visio is a partial exception
n  This means that interaction mechanisms can offer minimal

support
q  Difficult to connect to other visualizations

910

General Graphical Example

911

General Graphical: Evaluation

n  Consistency
q  Manual

n  Comprehensibility
q  Depends on skill of the

modeler and use of consistent
symbols/patterns

n  Dynamism
q  Some animation capabilities

n  View coordination
q  Difficult at best

n  Aesthetics
q  Modeler’s responsibility

n  Extensibility
q  Adding new symbols is easy,

adding semantics is harder

n  Scope/Purpose
q  Visualizing design decisions as

symbolic pictures
n  Basic Type

q  Graphical
n  Depiction

q  (Possibly) interconnected
symbols on a finite canvas

n  Interaction
q  Point and click, drag-and-drop

direct interactions with
symbols, augmented by menus
and dialogs

n  Fidelity
q  Generally canonical

912

229

Objectives
n  Concepts

q  What is visualization?
q  Differences between modeling and visualization
q  What kinds of visualizations do we use?
q  Visualizations and views
q  How can we characterize and evaluate visualizations?

n  Examples
q  Concrete examples of a diverse array of visualizations

n  Constructing visualizations
q  Guidelines for constructing new visualizations
q  Pitfalls to avoid when constructing new visualizations
q  Coordinating visualizations

913

UML Visualizations
n  Canonical graphical depictions + tool-specific interactions
n  XMI: Textual depiction in XML + text-editor interactions
n  Advantages

q  Canonical graphical depiction common across tools
q  Graphical visualizations have similar UI metaphors to

PowerPoint-style editors, but with UML semantics
q  XMI projection provides textual alternative

n  Disadvantages
q  No standard for interaction as there is for depiction
q  In some tools hard to tell where UML model ends and

auxiliary models begin
q  Most UML visualizations are restricted to (slight

variants) of the canonical UML depiction
914

UML Visualization

915
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

UML Visualization

916

<UML:Class xmi.id = '723'
 name = 'Data Store'
 visibility = 'public'
 isSpecification = 'false'
 isRoot = 'false'
 isLeaf = 'false'
 isAbstract = 'false'
 isActive = 'false'/>

<UML:Association xmi.id = '725'
 name = ''
 isSpecification = 'false'
 isRoot = 'false'
 isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Association.connection>
 <UML:AssociationEnd xmi.id = '726'
 visibility = 'public'
 isSpecification = 'false'
 isNavigable = 'true'
 ordering = 'unordered'
 aggregation = 'none'
 targetScope = 'instance'
 changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity xmi.id = '727'>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange xmi.id = '728'
 lower = '1'
 upper = '1'/>
 ...

230

UML Visualizations: Evaluation

n  Consistency
q  Generally good across diagrams;

small exceptions
n  Comprehensibility

q  Ubiquity assists interpretations
n  Dynamism

q  Rare
n  View coordination

q  Some editors better than others
n  Aesthetics

q  Simple symbols reduce
complexity; uniform diagrams

n  Extensibility
q  Profile support OK; major

language extensions hard

n  Scope/Purpose
q  Visualization of UML models

n  Basic Type
q  Graphical (diagrams), textual

(XMI)
n  Depiction

q  Diagrams in UML symbolic
vocabulary/XML-formatted text

n  Interaction
q  Depends on the editor;

generally point-and-click for
diagrams; text editor for XMI

n  Fidelity
q  Diagrams are canonical, XMI

elides layout info

917

Rapidé

n  Rapidé models are generally written with a canonical
textual visualization
q  Some graphical builders available as well

n  Focus: Interesting effect visualization of simulation results
n  Advantages

q  Provides an intuitive way to visualize the causal
relationships between events

q  Automatically generated from Rapide specifications
n  Disadvantages

q  Complex applications generate complex graphs
q  Difficult to identify why particular causal relationships

exist
n  Simulation is not interactive

918

Rapidé Examples

919

type DataStore is interface
 action in SetValues();
 out NotifyNewValues();
 behavior
 begin
 SetValues => NotifyNewValues();;
end DataStore;

type Calculation is interface
 action in SetBurnRate();
 out DoSetValues();
 behavior
 action CalcNewState();
 begin
 SetBurnRate => CalcNewState(); DoSetValues();;
end Calculation;

type Player is interface
 action out DoSetBurnRate();
 in NotifyNewValues();
 behavior
 TurnsRemaining : var integer := 1;
 action UpdateStatusDisplay();
 action Done();

Rapidé Effect Visualization: Evaluation

n  Comprehensibility
q  Easy to see causal relationships

but difficult to understand why
they’re there

n  Dynamism
q  No support

n  View coordination
q  Event traces are generated

automatically from architectural
models

n  Aesthetics
q  Simple unadorned directed

acyclic graph of nodes and
edges

n  Extensibility
q  Tool set is effectively a ‘black

box”

n  Scope/Purpose
q  Graphical event traces

n  Basic Type
q  Graphical

n  Depiction
q  Directed acyclic graph of

events
n  Interaction

q  No substantial interaction with
generated event traces

n  Fidelity
q  Each trace is an instance;

different simulation runs may
produce different traces in a
non-deterministic system

n  Consistency
q  Tiny symbol vocabulary

ensures consistency
920

231

Labeled Transition State Analyzer
(LTSA)

n  A tool for analyzing and simultaneously visualizing concurrent
systems’ behavior using a modeling language called FSP

n  Advantages
q  Provides multiple concurrent visualizations of concurrent

behavior
q  Integrates both model and effect visualizations, textual and

graphical depictions
q  Can develop domain-specific visualizations to understand

abstract models
n  Disadvantages

q  Behavior specification language has somewhat steep
learning curve

q  Developing domain-specific graphical visualizations can be
expensive

921

LTSA Examples

922

LTSA Examples

923

LTSA: Evaluation

n  Comprehensibility
q  FSP has some learning curve;

domain-specific effect
visualizations are innovative

n  Dynamism
q  Animation on state-transition

diagrams and domain-specific
visualizations

n  View coordination
q  Views are coordinated

automatically
n  Aesthetics

q  State transition diagrams are
traditional; domain-specific
visualizations can enhance
aesthetics

n  Extensibility
q  New domain-specific effect

visualizations as plug-ins

n  Scope/Purpose
q  Multiple coordinated

visualizations of concurrent
systems’ behavior

n  Basic Type
q  Textual, Graphical, Effect

n  Depiction
q  Text & state machines for

models, various effect viz.
n  Interaction

q  FSP can be edited textually or
graphically

n  Fidelity
q  Graphical visualizations may

elide some information
n  Consistency

q  Limited vocabulary helps ensure
consistency

924

232

xADL Visualizations

n  Coordinated set of textual, graphical, and effect visualizations
for an extensible ADL

n  Advantages
q  Provides an example of how to construct a wide variety of

(often) coordinated or interrelated visualizations
q  Lets users move fluidly from one visualization to another
q  Guidance available for extending visualizations or adding

new ones
n  Disadvantages

q  Some learning curve to extend graphical editors
q  Adding or extending visualizations has to be done carefully

so they play well with existing ones

925

xADL Visualization Examples

926

<types:component xsi:type="types:Component"
 types:id="myComp">
 <types:description xsi:type="instance:Description">
 MyComponent
 </types:description>
 <types:interface xsi:type="types:Interface"
 types:id="iface1">
 <types:description xsi:type="instance:Description">
 Interface1
 </types:description>
 <types:direction xsi:type="instance:Direction">
 inout
 </types:direction>
 </types:interface>
</types:component>

xADL Visualization Examples

927

<types:component xsi:type="types:Component"
 types:id="myComp">
 <types:description xsi:type="instance:Description">
 MyComponent
 </types:description>
 <types:interface xsi:type="types:Interface"
 types:id="iface1">
 <types:description xsi:type="instance:Description">
 Interface1
 </types:description>
 <types:direction xsi:type="instance:Direction">
 inout
 </types:direction>
 </types:interface>
</types:component>

component{
 id = "myComp";
 description = "MyComponent";
 interface{
 id = "iface1";
 description = "Interface1";
 direction = "inout";
 }
}

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

xADL Visualization Examples

928

<types:component xsi:type="types:Component"
 types:id="myComp">
 <types:description xsi:type="instance:Description">
 MyComponent
 </types:description>
 <types:interface xsi:type="types:Interface"
 types:id="iface1">
 <types:description xsi:type="instance:Description">
 Interface1
 </types:description>
 <types:direction xsi:type="instance:Direction">
 inout
 </types:direction>
 </types:interface>
</types:component>

component{
 id = "myComp";
 description = "MyComponent";
 interface{
 id = "iface1";
 description = "Interface1";
 direction = "inout";
 }
}

233

xADL Visualization Examples

929

<types:component xsi:type="types:Component"
 types:id="myComp">
 <types:description xsi:type="instance:Description">
 MyComponent
 </types:description>
 <types:interface xsi:type="types:Interface"
 types:id="iface1">
 <types:description xsi:type="instance:Description">
 Interface1
 </types:description>
 <types:direction xsi:type="instance:Direction">
 inout
 </types:direction>
 </types:interface>
</types:component>

component{
 id = "myComp";
 description = "MyComponent";
 interface{
 id = "iface1";
 description = "Interface1";
 direction = "inout";
 }
}

xADL Visualization Examples

930

<types:component xsi:type="types:Component"
 types:id="myComp">
 <types:description xsi:type="instance:Description">
 MyComponent
 </types:description>
 <types:interface xsi:type="types:Interface"
 types:id="iface1">
 <types:description xsi:type="instance:Description">
 Interface1
 </types:description>
 <types:direction xsi:type="instance:Direction">
 inout
 </types:direction>
 </types:interface>
</types:component>

component{
 id = "myComp";
 description = "MyComponent";
 interface{
 id = "iface1";
 description = "Interface1";
 direction = "inout";
 }
}

xADL Visualizations: Evaluation

n  Comprehensibility
q  Varies; some easier than others

n  Dynamism
q  Animation on state-transition

diagrams and domain-specific
visualizations

n  View coordination
q  Many views coordinated

‘live,’ MTAT leverages some
animation

n  Aesthetics
q  Varies; Archipelago promotes

aesthetic improvements by
allowing fine customization

n  Extensibility
q  Many extensibility mechanisms

at different levels

n  Scope/Purpose
q  Multiple coordinated

visualizations of xADL models
n  Basic Type

q  Textual, Graphical, Effect
n  Depiction

q  XML, abbreviated XML, symbol
graphs, hybrid effect (MTAT)

n  Interaction
q  Visualizations emulate various

editing paradigms
n  Fidelity

q  Textual & ArchEdit complete;
graphical leave detail out

n  Consistency
q  Effort to follow conventions

931

Objectives

n  Concepts
q  What is visualization?
q  Differences between modeling and visualization
q  What kinds of visualizations do we use?
q  Visualizations and views
q  How can we characterize and evaluate visualizations?

n  Examples
q  Concrete examples of a diverse array of visualizations

n  Constructing visualizations
q  Guidelines for constructing new visualizations
q  Pitfalls to avoid when constructing new visualizations
q  Coordinating visualizations

932

234

Constructing New Visualizations

n  Developing a new visualization can be expensive both in initial
development and maintenance

n  Must answer many questions in advance
q  Can I achieve my goals by extending an existing

visualization?
q  Can I translate into another notation and use a visualization

already available there?
q  How will my visualization augment the existing set of

visualizations for this notation?
q  How will my visualization coordinate with other

visualizations?
q  (Plus all the evaluation categories we’ve been exploring)

933

New Visualizations: Guidelines

n  Borrow elements from similar visualizations
q  Leverages existing stakeholder knowledge
q  Improves comprehensibility

n  Be consistent among visualizations
q  Don’t conflict with existing visualizations without a good

reason (e.g., developing a domain-specific visualization
where the concepts and metaphors are completely different)

n  Give meaning to each visual aspect of elements
q  Parsimony is more important than aesthetics
q  Corollary: avoid having non-explicit meaning encoded in

visualizations

934

New Visualizations: Guidelines
(cont’d)
n  Document the meaning of visualizations

q  Visualizations are rarely self-explanatory
q  Focus on mapping between model and

visualization
n  Balance traditional and innovative

interfaces
q  Stakeholders bring a lot of interaction

experience to the table
q  But just because a mechanism is popular

doesn’t mean it’s ideal
935

New Visualizations: Anti-Guidelines

n  Same Symbol, Different Meaning

936

235

New Visualizations: Anti-Guidelines (cont’d)

n  Differences without meaning

937

Coordinating Multiple Visualizations

n  How do we keep multiple simultaneous visualizations
of the same (part of the) architectural model
consistent with each other and the model?
q  This is NOT the same as maintaining architectural

consistency
q  If something is wrong with the model, this error would be

reflected in the visualizations
n  Can be made much easier by making simplifying

assumptions, e.g.:
q  Only one visualization may operate at a time
q  Only one tool can operate on the model at a time

n  But what if we can’t simplify like this?

938

Strategy: Peer-to-Peer Coordination

n  Each visualization communicates with each
other visualization for updates
q  Has scaling problems
q  Works best for visualizations known a priori

939

Strategy: Master-Slave

n  One visualization is the master and others
coordinate through it

n  Works best when visualizations are
subordinate
q  E.g., a “thumbnail” or “overview” next to a

main, zoomed-in visualization

940

236

Strategy: Pull-based

n  Visualizations repeatedly poll a model
repository for changes

n  Potential consistency/staleness problems
n  May be necessary if model repository is

entirely passive
n  May save computing power

941

Strategy: Push-based

n  Visualizations actively notified and update
themselves whenever model changes for any
reason

n  Best for multiple simultaneous visualizations
n  Hard to debug, must avoid infinite loops and

subtle concurrency conditions

942

Topic 24: Implementing
Architectures

Objectives

n  Concepts
q  Implementation as a mapping problem
q  Architecture implementation frameworks
q  Evaluating frameworks
q  Relationships between middleware, frameworks,

component models
q  Building new frameworks
q  Concurrency and generative technologies
q  Ensuring architecture-to-implementation consistency

n  Examples
q  Different frameworks for pipe-and-filter
q  Different frameworks for the C2 style

n  Application
q  Implementing Lunar Lander in different frameworks

944

237

Objectives

n  Concepts
q  Implementation as a mapping problem
q  Architecture implementation frameworks
q  Evaluating frameworks
q  Relationships between middleware, frameworks,

component models
q  Building new frameworks
q  Concurrency and generative technologies
q  Ensuring architecture-to-implementation consistency

n  Examples
q  Different frameworks for pipe-and-filter
q  Different frameworks for the C2 style

n  Application
q  Implementing Lunar Lander in different frameworks

945

The Mapping Problem

n  Implementation is the one phase of software engineering that is not
optional

n  Architecture-based development provides a unique twist on the
classic problem
q  It becomes, in large measure, a mapping activity

n  Maintaining mapping means ensuring that our architectural intent is
reflected in our constructed systems

946

Design
Decisions

Implementation
Artifacts

Common Element Mapping

n  Components and Connectors
q  Partitions of application computation and

communication functionality
q  Modules, packages, libraries, classes, explicit

components/connectors in middleware
n  Interfaces

q  Programming-language level interfaces (e.g.,
APIs/function or method signatures) are common

q  State machines or protocols are harder to map

947

Common Element Mapping (cont’d)

n  Configurations
q  Interconnections, references, or dependencies

between functional partitions
q  May be implicit in the implementation
q  May be externally specified through a MIL and

enabled through middleware
q  May involve use of reflection

n  Design rationale
q  Often does not appear directly in implementation
q  Retained in comments and other documentation

948

238

Common Element Mapping (cont’d)

n  Dynamic Properties (e.g., behavior):
q  Usually translate to algorithms of some sort
q  Mapping strategy depends on how the behaviors are specified

and what translations are available
q  Some behavioral specifications are more useful for generating

analyses or testing plans
n  Non-Functional Properties

q  Extremely difficult to do since non-functional properties are
abstract and implementations are concrete

q  Achieved through a combination of human-centric strategies like
inspections, reviews, focus groups, user studies, beta testing,
and so on

949

One-Way vs. Round Trip Mapping

n  Architectures inevitably change after implementation begins
q  For maintenance purposes
q  Because of time pressures
q  Because of new information

n  Implementations can be a source of new information
q  We learn more about the feasibility of our designs when we

implement
q  We also learn how to optimize them

950

Design
Decisions

Implementation
Artifacts

One-Way vs. Round Trip Mapping
(cont’d)
n  Keeping the two in sync is a difficult technical

and managerial problem
q  Places where strong mappings are not present

are often the first to diverge
n  One-way mappings are easier

q  Must be able to understand impact on
implementation for an architectural design
decision or change

n  Two way mappings require more insight
q  Must understand how a change in the

implementation impacts architecture-level design
decisions

951

One-Way vs. Round Trip Mapping
(cont’d)
n  One strategy: limit changes

q  If all system changes must be done to the architecture first, only
one-way mappings are needed

q  Works very well if many generative technologies in use
q  Often hard to control in practice; introduces process delays and

limits implementer freedom
n  Alternative: allow changes in either architecture or implementation

q  Requires round-trip mappings and maintenance strategies
q  Can be assisted (to a point) with automated tools

952

239

Architecture Implementation
Frameworks
n  Ideal approach: develop architecture based on a known

style, select technologies that provide implementation
support for each architectural element

953

Design
Decisions

Database

Software
Library

OO Class

Architecture Implementation
Frameworks
n  This is rarely easy or trivial

q  Few programming languages have explicit support
for architecture-level constructs

q  Support infrastructure (libraries, operating
systems, etc.) also has its own sets of concepts,
metaphors, and rules

n  To mitigate these mismatches, we leverage
an architecture implementation framework

954

Architecture Implementation
Frameworks
n  Definition: An architecture implementation framework is

a piece of software that acts as a bridge between a
particular architectural style and a set of implementation
technologies. It provides key elements of the
architectural style in code, in a way that assists
developers in implementing systems that conform to the
prescriptions and constraints of the style.

955

Design
Decisions
Design

Decisions

Database

Software
Library

OO Class
F
r
a
m
e
w
o
r
k

Canonical Example

n  The standard I/O (‘stdio’) framework in
UNIX and other operating systems
q  Perhaps the most prevalent framework in use

today
q  Style supported: pipe-and-filter
q  Implementation technologies supported:

concurrent process-oriented operating system,
(generally) non-concurrent language like C

956
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; ｩ 2008 John Wiley & Sons, Inc. Reprinted with permission.

240

More on Frameworks

n  Frameworks are meant to assist developers in following a style
q  But generally do not constrain developers from violating a style if

they really want to
n  Developing applications in a target style does not require a

framework
q  But if you follow good software engineering practices, you’ll

probably end up developing one anyway
n  Frameworks are generally considered as underlying infrastructure or

substrates from an architectural perspective
q  You won’t usually see the framework show up in an

architectural model, e.g., as a component

957

Same Style, Different Frameworks

n  For a given style, there is no one perfect
architecture framework
q  Different target implementation technologies

induce different frameworks
n  stdio vs. iostream vs. java.io

n  Even in the same (style/target technology)
groupings, different frameworks exist due to
different qualitative properties of frameworks
q  java.io vs. java.nio
q  Various C2-style frameworks in Java

958

Evaluating Frameworks

n  Can draw out some of the qualitative
properties just mentioned

n  Platform support
q  Target language, operating system, other

technologies
n  Fidelity

q  How much style-specific support is provided by
the framework?
n  Many frameworks are more general than one target style

or focus on a subset of the style rules
q  How much enforcement is provided? 959

Evaluating Frameworks (cont’d)

n  Matching Assumptions
q  Styles impose constraints on the target architecture/application
q  Frameworks can induce constraints as well

n  E.g., startup order, communication patterns …
q  To what extent does the framework make too many (or too few)

assumptions?
n  Efficiency

q  Frameworks pervade target applications and can potentially get
involved in any interaction

q  To what extent does the framework limit its slowdown and
provide help to improve efficiency if possible (consider buffering
in stdio)?

960

241

Evaluating Frameworks (cont’d)

n  Other quality considerations
q  Nearly every other software quality can affect

framework evaluation and selection
n  Size
n  Cost
n  Ease of use
n  Reliability
n  Robustness
n  Availability of source code
n  Portability
n  Long-term maintainability and support

961

Middleware and Component Models

n  This may all sound similar to various kinds of
middleware/component frameworks
q  CORBA, COM/DCOM, JavaBeans, .NET, Java Message Service

(JMS), etc.

n  They are closely related
q  Both provide developers with services not available in the

underlying OS/language
q  CORBA provides well-defined interfaces, portability, remote

procedure call…
q  JavaBeans provides a standardized packaging framework (the

bean) with new kinds of introspection and binding

962

Middleware and Component Models
(cont’d)
n  Indeed, architecture implementation

frameworks are forms of middleware
q  There’s a subtle difference in how they emerge

and develop
q  Middleware generally evolves based on a set of

services that the developers want to have
available
n  E.g., CORBA: Support for language heterogeneity,

network transparency, portability
q  Frameworks generally evolve based on a

particular architectural style that developers want
to use

n  Why is this important? 963

Middleware and Component Models
(cont’d)
n  By focusing on services, middleware developers often make other

decisions that substantially impact architecture
n  E.g., in supporting network transparency and language

heterogeneity, CORBA uses RPC
q  But is RPC necessary for these services or is it just an enabling

technique?
n  In a very real way, middleware induces an architectural style

q  CORBA induces the ‘distributed objects’ style
q  JMS induces a distributed implicit invocation style

n  Understanding these implications is essential for not having major
problems when the tail wags the dog!

964

242

Resolving Mismatches

n  A style is chosen first, but the middleware selected for
implementation does not support (or contradicts) that style

n  A middleware is chosen first (or independently) and has undue
influence on the architectural style used

n  Strategies
q  Change or adapt the style
q  Change the middleware selected
q  Develop glue code
q  Leverage parts of the middleware

and ignore others
q  Hide the middleware in components/connectors

965

Use the middleware
as the basis for

a framework

Hiding Middleware in Connectors

966

Comp 1

Comp 2

Async Event

Comp 1

Comp 2

RPC

(thread)

(thread)

Architecture

Implementation

Building a New Framework

n  Occasionally, you need a new framework
q  The architectural style in use is novel
q  The architectural style is not novel but it is being implemented

on a platform for which no framework exists
q  The architectural style is not novel and frameworks exist for

the target platform, but the existing frameworks are
inadequate

n  Good framework development is extremely difficult
q  Frameworks pervade nearly every aspect of your system
q  Making changes to frameworks often means changing the

entire system
q  A task for experienced developers/architects

967

New Framework Guidelines

n  Understand the target style first
q  Enumerate all the rules and constraints in

concrete terms
q  Provide example design patterns and corner

cases
n  Limit the framework to the rules and

constraints of the style
q  Do not let a particular target application’s needs

creep into the framework
q  “Rule of three” for applications

968

243

New Framework Guidelines (cont’d)

n  Choose the framework scope
q  A framework does not necessarily have to

implement all possible stylistic advantages (e.g.,
dynamism or distribution)

n  Avoid over-engineering
q  Don’t add capabilities simply because they are

clever or “cool”, especially if known target
applications won’t use them

q  These often add complexity and reduce
performance

969

New Framework Guidelines (cont’d)

n  Limit overhead for application developers
q  Every framework induces some overhead (classes must

inherit from framework base classes, communication
mechanisms limited)

q  Try to put as little overhead as possible on framework
users

n  Develop strategies and patterns for legacy systems and
components
q  Almost every large application will need to include

elements that were not built to work with a target
framework

q  Develop strategies for incorporating and wrapping these

970

Concurrency

n  Concurrency is one of the most difficult concerns to address in
implementation
q  Introduction of subtle bugs: deadlock, race conditions…
q  Another topic on which there are entire books written

n  Concurrency is often an architecture-level concern
q  Decisions can be made at the architectural level
q  Done carefully, much concurrency management can be

embedded into the architecture framework
n  Consider our earlier example, or how pipe-and-filter architectures

are made concurrent without direct user involvement

971

Generative Technologies

n  With a sufficiently detailed architectural
model, various implementation artifacts can
be generated
q  Entire system implementations

n  Requires extremely detailed models including behavioral
specifications

n  More feasible in domain-specific contexts

q  Skeletons or interfaces
n  With detailed structure and interface specifications

q  Compositions (e.g., glue code)
n  With sufficient data about bindings between two

elements 972

244

Maintaining Consistency

n  Strategies for maintaining one-way or round-trip mappings
q  Create and maintain traceability links from architectural

implementation elements
n  Explicit links in a database, in architectural models, in

code comments can all help with consistency checking
q  Make the architectural model part of the implementation

n  When the model changes, the implementation adapts
automatically

n  May involve “internal generation”
q  Generate some or all of the implementation from the

architecture

973

Topic 25: Implementation
Architectures (II)

Objectives

n  Concepts
q  Implementation as a mapping problem
q  Architecture implementation frameworks
q  Evaluating frameworks
q  Relationships between middleware, frameworks,

component models
q  Building new frameworks
q  Concurrency and generative technologies
q  Ensuring architecture-to-implementation consistency

n  Examples
q  Different frameworks for pipe-and-filter
q  Different frameworks for the C2 style

n  Application
q  Implementing Lunar Lander in different frameworks

975

Objectives

n  Concepts
q  Implementation as a mapping problem
q  Architecture implementation frameworks
q  Evaluating frameworks
q  Relationships between middleware, frameworks,

component models
q  Building new frameworks
q  Concurrency and generative technologies
q  Ensuring architecture-to-implementation consistency

n  Examples
q  Different frameworks for pipe-and-filter
q  Different frameworks for the C2 style

n  Application
q  Implementing Lunar Lander in different frameworks

976

245

Recall Pipe-and-Filter

n  Components (‘filters’) organized
linearly, communicate through character-
stream ‘pipes,’ which are the
connectors

n  Filters may run concurrently on partial data
n  In general, all input comes in through the

left and all output exits from the right 977

Framework #1: stdio

n  Standard I/O framework used in C programming language
n  Each process is a filter

q  Reads input from standard input (aka ‘stdin’)
q  Writes output to standard output (aka ‘stdout’)

n  Also a third, unbuffered output stream called standard error
(‘stderr’) not considered here

q  Low and high level operations
n  getchar(…), putchar(…) move one character at a time
n  printf(…) and scanf(…) move and format entire strings

q  Different implementations may vary in details (buffering strategy,
etc.)

978

Evaluating stdio

n  Matching assumptions
q  Filters are processes and

pipes are implicit. In-
process P&F applications
might require modifications

n  Efficiency
q  Whether filters make

maximal use of
concurrency is partially up
to filter implementations
and partially up to the OS

n  Platform support
q  Available with most, if not

all, implementations of C
programming language

q  Operates somewhat
differently on OSes with no
concurrency (e.g., MS-
DOS)

n  Fidelity
q  Good support for

developing P&F
applications, but no
restriction that apps have to
use this style

979

Framework #2: java.io

n  Standard I/O framework used in Java language
n  Object-oriented
n  Can be used for in-process or inter-process P&F

applications
q  All stream classes derive from InputStream or

OutputStream
q  Distinguished objects (System.in and System.out) for

writing to process’ standard streams
q  Additional capabilities (formatting, buffering) provided

by creating composite streams (e.g., a Formatting-
Buffered-InputStream)

980

246

Evaluating java.io

n  Matching assumptions
q  Easy to construct intra-

and inter-process P&F
applications

q  Concurrency can be an
issue; many calls are
blocking

n  Efficiency
q  Users have fine-grained

control over, e.g., buffering
q  Very high efficiency

mechanisms (memory
mapped I/O, channels) not
available (but are in
java.nio)

n  Platform support
q  Available with all Java

implementations on many
platforms

q  Platform-specific differences
abstracted away

n  Fidelity
q  Good support for developing

P&F applications, but no
restriction that apps have to
use this style

981

Recall the C2 Style

n  Layered style
with event-based
communication
over two-way
broadcast
buses

n  Strict rules on
concurrency,
dependencies,
and so on

n  Many frameworks developed for
different languages; focus on two
alternative Java frameworks here

982

Framework #1: Lightweight C2 Framework

n  16 classes, 3000
lines of code

n  Components &
connectors extend
abstract base
classes

n  Concurrency,
queuing handled at
individual comp/conn
level

n  Messages are
request or
notification objects

983

Evaluating Lightweight C2 Framework

n  Matching assumptions
q  Comp/conn main classes

must inherit from
distinguished base
classes

q  All messages must be in
dictionary form

n  Efficiency
q  Lightweight framework;

efficiency may depend
on threading and
queuing policy
implemented by
individual elements

n  Platform support
q  Available with all Java

implementations on
many platforms

n  Fidelity
q  Assists developers with

many aspects of C2 but
does not enforce these
constraints

q  Leaves threading and
queuing policies up to
individual elements

984

247

Framework #2: Flexible C2 Framework

n  73 classes, 8500
lines of code

n  Uses interfaces
rather than base
classes

n  Threading policy
for application
is pluggable

n  Message queuing policy is
also pluggable

985

Framework #2: Flexible C2 Framework

986

Evaluating Flexible C2 Framework

n  Matching assumptions
q  Comp/conn main classes

must implement
distinguished interfaces

q  Messages can be any
serializable object

n  Efficiency
q  User can easily swap out

and tune threading and
queuing policies without
disturbing remainder of
application code

n  Platform support
q  Available with all Java

implementations on
many platforms

n  Fidelity
q  Assists developers with

many aspects of C2 but
does not enforce these
constraints

q  Provides several
alternative application-
wide threading and
queuing policies

987

Objectives

n  Concepts
q  Implementation as a mapping problem
q  Architecture implementation frameworks
q  Evaluating frameworks
q  Relationships between middleware, frameworks,

component models
q  Building new frameworks
q  Concurrency and generative technologies
q  Ensuring architecture-to-implementation consistency

n  Examples
q  Different frameworks for pipe-and-filter
q  Different frameworks for the C2 style

n  Application
q  Implementing Lunar Lander in different frameworks

988

248

Implementing Pipe and Filter Lunar
Lander

n  Framework: java.io
n  Implementing as a multi-process application

q  Each component (filter) will be a separate OS process
q  Operating system will provide the pipe connectors

n  Going to use just the standard input and output streams
q  Ignoring standard error

n  Ignoring good error handling practices and corner cases for
simplicity

989

Implementing Pipe and Filter Lunar
Lander

n  A note on I/O:
q  Some messages sent from components are intended for output

to the console (to be read by the user)
n  These messages must be passed all the way through the

pipeline and output at the end
n  We will preface these with a ‘#’

q  Some messages are control messages meant to communicate
state to a component down the pipeline
n  These messages are intercepted by a component and

processed
n  We will preface these with a ‘%’

990

Implementing Pipe and Filter Lunar
Lander

n  First: GetBurnRate component
q  Loops; on each loop:

n  Prompt user for new burn rate
n  Read burn rate from the user on standard input
n  Send burn rate to next component
n  Quit if burn rate read < 0

991

Implementing Pipe and Filter Lunar
Lander

n  Second: CalcNewValues Component
q  Read burn rate from standard input
q  Calculate new game state including game-over
q  Send new game state to next component

n  New game state is not sent in a formatted string; that’s
the display component’s job

992

249

Implementing Pipe and Filter Lunar
Lander

n  Third: DisplayValues component
q  Read value updates from standard input
q  Format them for human reading and send them to

standard output

993

Implementing Pipe and Filter Lunar
Lander

n  Instantiating the application
q  java GetBurnRate | java CalcNewValues | java DisplayValues

994

Implementing Pipe and Filter Lunar Lander

995

Implementing Pipe and Filter Lunar Lander

996

250

Implementing Pipe and Filter Lunar Lander

997

Implementing Pipe and Filter Lunar Lander

998

Takeaways

n  java.io provides a number of useful facilities
q  Stream objects (System.in, System.out)
q  Buffering wrappers

n  OS provides some of the facilities
q  Pipes
q  Concurrency support

n  Note that this version of the application would not work if it
operated in batch-sequential mode

n  We had other communication mechanisms available, but did not use
them to conform to the P&F style

n  We had to develop a new (albeit simple) protocol to get the correct
behavior

999

Implementing Lunar Lander in C2

n  Framework: Lightweight
C2 framework

n  Each component has its
own thread of control

n  Components receive
requests or notifications
and respond with new
ones

n  Message routing follows
C2 rules

n  This is a real-time, clock-driven version of Lunar Lander

1000

251

Implementing Lunar Lander in C2
(cont’d)
n  First: Clock component
n  Sends out a ‘tick’ notification

periodically
n  Does not respond to any

messages

1001

Implementing Lunar Lander in C2

n  Second: GameState
Component

n  Receives request to update
internal state

n  Emits notifications of new
game state on request
or when state changes

n  Does NOT compute new
state
q  Just a data store

1002

Implementing Lunar Lander in C2

n  Third: GameLogic
Component

n  Receives notifications of
game state changes

n  Receives clock ticks
q  On clock tick notification,

calculates new state
and sends request up

1003
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Implementing Lunar Lander in C2

n  Fourth: GUI Component
n  Reads burn rates from

user and sends them
up as requests

n  Receives notifications of
game state changes and
formats them to console

1004

252

Implementing Lunar Lander in C2

n  Lastly, main program
n  Instantiates and connects

all elements of the system

1005

Takeaways

n  Here, the C2 framework provides most all of the scaffolding we need
q  Message routing and buffering
q  How to format a message
q  Threading for components
q  Startup and instantiation

n  We provide the component behavior
q  Including a couple new threads of our own

n  We still must work to obey the style guidelines
q  Not everything is optimal: state is duplicated in Game Logic, for

example

1006

Topic 26: Software Architecture:
Being Creative

Yesterday – 1990’s

n  Box and lines – ad-hoc
n  No analysis of consistency of specification
n  No checking of architecture-implementation

consistency
n  Importance of architecture in industry

q  recognition of a shared repository of methods,
techniques, patterns and idioms (engineering)

q  exploiting commonalities in specific domains to
provide reusable frameworks for product families

1008

253

A Few Years Later

n  Architecting A first class activity in software
development life cycle

n  Architecture Description Languages (ADLs)
n  Product Lines and Standards
n  Codification and Dissemination

1009

Today

n  Cloud
n  Big Data
n  Internet of Things
n  …

1010

1011

A Short History of Software

1011 1012

The classical ways of
describing architecture

1012

254

1013

Today’s Software Architectures
Are Also Extremely Sophisticated

n  Highly distributed and federated
n  have a social architecture
n  Built from cutting edge ingredients
 Example: http://clickatell.com
n  Have to scale globally
n  Set with expectations that are very high for

functionality and low for the cost to
develop/own new solutions

n  created with productivity-oriented design
& development platforms

n  Must co-exist with many other
technologies, standards, and architectures

1013 1013

Integrating with 3rd party
suppliers live on the Web

as well as being a 3rd party
supplier is the name of the

game circa-2009

1014

The application
“stack” is richer now

1014

1015

Web-Oriented Architecture

1015 1015 1016

Recent technological innovations coming
primarily from the online world

n  Cloud computing
 • Utility/grid/Platform-as-a-service
n  Non-relational databases
 • S3, CouchDB, GAE Datastore, Drizzle, etc.
n  New “productivity-oriented” platforms
 • RIA: Flex/AIR, JavaFX
 • Stacks: Rails, CakePHP, Grails, GAE, iPhone,

etc.
n  Web-Oriented Architecture

1016 1016

255

1017

Changes to the processes
that create architecture

n  Increasing move to assembly and
integration over development of new code

n  Perpetual Beta and “extreme” agile
n  Community-based development and
 “commercial source”
 • Product Development 2.0

1017 1017 1018

Emergent Architecture

1018 1018

1019

Tenets of Emergent
Architecture

n  Community-driven architecture
n  Autonomous stakeholders
n  Adaptive processes
n  Resource constraints
n  Decentralized solutions
n  Emergent outcomes

1019 1019 1020

Benefits

n  Dynamic response and adaptation to change
n  Architecture supported and driven widely by

local users
n  Less waste
n  More access to opportunity
n  Better fit to business needs

1020 1020

256

1021

Motivations for
Open Supply Chains

n  Increase reach and head off competition
n  Tap into innovation
n  Grow external investment
n  Cost-effectively scale business relationships

 Going from 10s to thousands of integrated

partners

1021 1021 1022

Open Platform vs.
Closed Platform

1022 1022

1023

New Distribution Models

1023 1023 1024

2.0 models are beginning
to transform everything

n  Product Development
n  Marketing and Advertising
n  Operations
n  Customer Service

1024 1024

257

1025

Challenges to Transitioning to
New Architectural Modes

n  Innovator’s Dilemma
q  “How do we disrupt ourselves
 before our competition does?”
n  Not-Invented Here
n  Overly fearful of failure
n  Deeply ingrained classical software culture
n  Low level of 2.0 literacy

1025 1025

Summary

n  Creativity should be regarded as a
key to developing a software
architecture.

n  The challenge is how to reconcile
objective precision with subjective
ambiguity.

Discussion Questions
n  Topic 1

q  What is software architecture, in your own words?
q  What do you think of Brooks' "Surgical Team"?
q  How did Fred Brooks Jr. describe the role of the architect in his "The

Mythical Man-Month"?
q  What have you learnt from David Parnas, for software development?

n  Topic 2
q  What is your explanation of ABC?
q  How do you plan to become a good software architect, referring to the

Architectural Business Cycle?
q  What are the steps in the Software Architecture Analysis Method

(SAAM)?
n  Topic 3 - Software Architecture and the Built Environment

q  What does the software learn from built environment?
q  What are the six S's of shearing layers?
q  What are the Lessons for Software Architecture?

1027

n  Topic 4

q  Compare and contrast the ‘Masterplan’ and ‘Piecemeal Growth’ views of
Software Architecture.

q  Explain design pattern in your own words.
q  What are the relationships between pattern and pattern languages?

n  Topic 5
q  What role does ADL play in software architecture?
q  Please give an definition to ADL.
q  What are the basic elements of an ADL?

n  Topic 6
q  What is an ‘architectural style’ and what is an ‘architectural pattern’?
q  What is the Blackboard Architecture Style?
q  What is an Attribute Based Architectural Style (ABAS)?

n  Topic 7
q  According to Frank Buschmann et al.'s Patterns of Software Architecture, into

which three levels that the patterns emerging during the software development
can be divided?

q  Could you give an example of an architectural pattern?
q  Explain the following architectural patterns: MVC, Layers.

n  Topic 8
q  What is the purpose of DSSA?
q  What is DSSA and what does DSSA consist of?
q  What are the general steps solving problems using DSSAs?

1028

258

 n  Topic 9
q  What is Dan Bredemeyer's Software Architecture Model?
q  What is Bredemeyer's suggested architecting process, and its elemental

steps?
q  How to ensure a good architecture be created?

n  Topic 10
q  What is the building block of UML?
q  What is the typical architectural views(4+1 views) adopted by UML?
q  What are the characteristics of the UML software development life

cycle?
n  Topic 11

q  What's the biggest single problem for Component Based Development?
q  What's the suggested method to solve the problems with component

interfaces?
q  what does an architectural approach to CBD require?

n  Topic 12
q  What is software architecture evaluation, and what are the benefits?
q  Explain the preconditions, activities and outputs of architecture

evaluation.
q  What are the problems with current evaluation approaches?

1029

 n  Topic 13
q  How could we understand that objects can be thought of

architectural spaces?
q  What's the significance of interfaces for architecture?
q  What is a levelised system? How to recognise levelised

structures?
n  Topic 14

q  What's the purpose of the techniques such as Java RMI,
CORBA, Microsoft Com/DCom etc.?Is there anything in
common among them?

q  Describe the conception of middleware.
q  What are the functions of an ORB(Object Request Broker)?

n  Topic 15
q  Explain the basic idea of MDA and its benefits.
q  What are the three types of models that MDA introduced?
q  Explain the process of development using MDA.

1030

 n  Topic 16
q  How to understand the relationships between architecture and

process?
q  What are the underlying notions and steps of the Architectural

Tradeoff Analysis Method (ATAM)?
q  What are the steps in the SCRUM process?

n  Topic 17
q  Explain the conception of legacy systems and try to understand

the challenges and chances they will bring to us.
q  Why reverse-architecting and the path to achieve it?
q  What's the idea of architecture exploration and what are the

challenges we are facing in this step?
n  Topic 18

q  What roles for architecture today?
q  How to understand that architecting is becoming a first-class

activity in software development cycle?
q  What would be tomorrow's trends of software architecture?

1031

 n  Topic 19
n  Topic 20
n  Topic 21
n  Topic 22
n  Topic 23
n  Topic 24
n  Topic 25
n  Topic 26

1032

